20U111

(Pages: 2)

Name:

Reg.No:

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U BCA1 C02 - DISCRETE MATHEMATICS

(Mathematics - Complementary Course)

(2019 Admission onwards)

Time : 2.00 Hours

Maximum : 60 Marks

Credit : 3

Part A (Short answer questions)

Answer *all* question. Each question carries 2 marks.

- 1. Determine whether $\sim p \leftrightarrow (p \lor \sim p)$ is a contradiction.
- 2. Negate each quantified propositions
 - a). Every computer is a 16-bit machine.
 - b). Every super computer is manufactured in Japan.
- 3. Draw the logic gate circuit for the Boolean expression $(A, B) + (\overline{A})$.
- 4. Define directed edge of a graph.
- 5. Define isolated node and give an example.
- 6. Define length of a graph and give an example.
- 7. Define n-Star and find its chromatic number.
- 8. Define minimally connected graph.
- 9. Define a weighted graph and give an example.
- 10. Prove or disprove: Every edge of a tree is a cut-set.
- 11. What is the difference between weakly connected graph and strongly connected graph.
- 12. Write the Euler's formula for connected planar graph.

Ceiling: 20 Marks

Part B (Short essay questions)

Answer *all* question. Each question carries 5 marks.

- 13. Construct a truth table of
 - a). $(p \wedge q) \rightarrow (p \vee q)$. b). $(p \vee q) \leftrightarrow (p \wedge q)$.
- 14. (i) What you mean by power set of a set ?
 (ii) Write the power set of the set A = {1, 2, 3, 4}.
- 15. Using truth tables, prove the distributive laws in a boolean algebra.
- 16. Explain complete graph with examples.
- 17. Explain bipartite and complete bipartite graph with suitable examples.
- 18. Explain the following

a) Spanning tree	b) Rank of a graph G .	c) Nullity of a graph G
d) Branch of a tree.	e) Chord of a tree.	

19. Explain planar graph and non planar graph with examples.

Ceiling: 30 Marks

Part C (Essay questions)

Answer any one question. Each question carries 10 marks.

- 20. (i) Show that the relation R on the set \mathbb{Z} of integers given by $R = \{ \langle a, b \rangle : 2 \text{ divides } a b \}$ is an equivalence relation on \mathbb{Z} .
 - (ii) Give an example of a relation, which is reflexive and transitive, but not symmetric.
- 21. (i) Draw the Hasse diagram for the relation \leq on $X = \{2, 3, 6, 12, 24, 36\}$ defined by $\leq = \{\langle x, y \rangle: x \text{ divides } y\}.$
 - (ii) Find the minimal members and maximal members, if any, in this poset.

 $(1 \times 10 = 10 \text{ Marks})$
