Name:	•••	••	•••	•••	•••	• •	•	••	•••
Reg. N	0:	•••		•••		•••	•••		•••

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(Pages: 2)

(CUCBCSS-UG)

CC15U ST1 C01 - BASIC STATISTICS AND PROBABILITY

(Complementary)

(2015 to 2018 Admissions - Supplementary)

Time: Three Hours

Maximum: 80 Marks

Section A

Answer *all* questions. Each question carries 1 mark.

1. The relation between A.M., G.M. and H.M. is

2. Best measure of dispersion is

3. The idea of frequency definition of probability is given by

4. If $B \subset A$, the relation between P(A) and P(B) is $\cdots \cdots \cdots$

5. If A and B are independent events, then $P(A \mid B)$ is $\cdots \cdots \cdots$

Write true or false:

6. The algebraic sum of the deviations of a set of numbers from their mean is one.

7. Second quartile and fifth decile are equal.

8. r = 0 indicates that there is no linear relationship between the variables.

9. P(A'B) = P(A) - P(AB).

10. An event whose occurrence is inevitable is called an impossible.

 $(10 \times 1 = 10 \text{ Marks})$

Section B

Answer *all* questions. Each question carries 2 marks.

- 11. Define geometric mean
- 12. What is coefficient of variation.
- Define sample space of a random experiment and write down the sample space when a coin is tossed thrice.
- 14. Define conditional probability.
- 15. State the axiomatic definition of probability.
- 16. Define a random variable.
- 17. State the properties of probability distribution functions?

 $(7 \times 2 = 14 \text{ Marks})$

Section C

Answer any *three* questions. Each question carries 4 marks.

- 18. Prove that the sum of squares of the deviations of a set of numbers from their mean is the least.
- 19. Find the variance of the first *n* natural numbers.
- 20. State and prove the multiplication theorem of probability.
- 21. For the p.m.f. $P(X = x) = c(\frac{1}{2})^x$, x = 0, 1, 2, ... find c, P(X > 3)
- 22. If P(A)=0.4, P(B)=0.3, P(AB)=0.2 find the probability of :
 - (i) at least one of the events occurs.
 - (ii) exactly one of the events occurs.

$(3 \times 4 = 12 \text{ Marks})$

Section D

Answer any *four* questions. Each question carries 6 marks.

- 23. Define mean deviation about mean. Show that standard deviation is not less than mean deviation about mean, for any discrete distribution.
- 24. Explain the principle of least squares. Describe how an exponential curve of the form $y = ab^x$ can be fitted.
- 25. The two regression lines are 3x + 12y 10 = 0 and 3y + 9x 46 = 0. Find (a) the means of X and Y, (b) the correlation coefficient.
- 26. Show that the correlation coefficient always lies between -1 and +1.
- 27. Prove or disprove: Pairwise independence does not imply Mutual independence.
- 28. Let X be a continuous random variable with probability density function $f(x) = \begin{cases} \frac{x^2}{9}, & 0 \le x < 3\\ 0, & \text{elsewhere.} \end{cases}$

Find the pdf of $Y = X^2$

$(4 \times 6 = 24 \text{ Marks})$

Section E

Answer any *two* questions. Each question carries 10 marks.

29. The scores of two teams in a match are given below. Find which team is more consistent in their play

Team A : 32 38 39 47 48 $50 \ 62$ Team B : 31 34 48 40 48 53 55

- 30. Explain "rank correlation". Derive the formula for Spearman's rank correlation coefficient.
- 31. State and establish Baye's theorem for a countable number of events.

32. A random variable X has the following probability function

$$f(x) = \begin{cases} k, & \text{if } x = -1 \\ 2k, & \text{if } x = 0 \\ 3k, & \text{if } x = 1 \\ 0, & \text{Otherwise} \end{cases}$$

(a) Determine the value of k.

- (b) Find P(X < 0) and $P(X \ge 0.5)$.
- (c) Write down the p.m.f of Y = 2X + 3.

 $(2 \times 10 = 20 \text{ Marks})$
