(Pages: 2)

Name	•••	•••	•	•••	••
Reg. No		•••	•		••

THIRD SEMESTER B.Sc. DEGREE EXAMINATION NOVEMBER 2020

(CUCBCSS-UG)

CC15U MAT3 C03 / CC18U MAT3 C03 - MATHEMATICS

(Mathematics - Complementary)

(2015 to 2018 Admissions - Supplementary/Improvement)

Time: Three Hours

Maximum:80 Marks

PART A

Answer *all* questions. Each question carries 1 mark.

- 1. Determine c if $y = ce^{-x^2}$ and y (0) = 0.5.
- 2. Degree of the differential equation $(y')^2 + y = x^2 2$ is
- 3. Solve y' = 2y.
- 4. Is the matrix $\begin{pmatrix} 1 & 2 \\ 3 & 3 \end{pmatrix}$ singular?
- 5. The eigen values of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ are
- 6. State Cayley Hamilton theorem.
- 7. What is the volume of the parallelepiped with co-edge vectors \bar{a} , $\bar{b} \& \bar{c}$.
- 8. $(\vec{\iota}, \vec{j}, \vec{k}) = \dots$
- 9. Find $\nabla \varphi$ if $\varphi = xy^2 z$.
- 10. The directional derivative of a scalar field φ at a point in the direction of a unit vector \bar{a} is
- 11. Give an example of a non-orientable surface.
- 12. State Divergence theorem.

(12 x 1 = 12 Marks)

PART B

Answer any *nine* questions. Each question carries 2 marks.

- 13. Find the general solution $y' = 1 + 0.01 y^2$
- 14. Solve $y' y = e^{2x}$
- 15. Find the integrating factor of the differential equation $\frac{dy}{dx} + y \tan x = \cos^3 x$.
- 16. If 1 and 3 are the eigen values of A find the eigen values of A^{-1}
- 17. Reduce to normal form and hence find the rank of the matrix $\begin{pmatrix} 1 & 2 & -3 \\ 2 & 5 & -4 \end{pmatrix}$
- 18. Find unit normal to the surface $x^2y + 2xz = 4$ at (1,0,2)
- 19. Prove that div $\bar{r} = 3$
- 20. Find the parametric representation of the sphere $x^2 + y^2 + z^2 = a^2$
- 21. Find the angle between the lines 3x + 5y = 0 and 4x 2y = 1 using vector method.

19U314S

- 22. Determine the arc length of the curve $x = \cos t$, $y = \sin t$ between t = 0 and $t = 2\pi$
- 23. Check for the path independence: $\int_C 3z^2 dx + 6xz dx$
- 24. Show that $yz\vec{\imath} + zx\vec{\jmath} + xy\vec{k}$ is irrotational.

(9 x 2 = 18 Marks)

PART C

Answer any six questions. Each question carries 5 marks.

25. Show that $(2xy + y - tany) dx + (x^2 - xtan^2y + sec^2y + 2)dy = 0$ is exact and solve it. 26. Solve $y' - Ay = -By^2$, A, B are positive.

- 27. Find the rank of the matrix A, by reducing to Echelon form $A = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$
- 28. Using Cayley Hamilton theorem find A^{-1} , if $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
- 29. Find the tangential and normal acceleration of a body moving along a path with position vector $\bar{r}(t) = cost\bar{t} + sin2t\bar{j} + cos2t\bar{k}$
- 30. If $\nabla \varphi = (y + y^2 + z^2)\overline{i} + (x + z + 2xy)\overline{j} + (y + 2zx)\overline{k}$, find the potential function φ such that $\varphi(1,1,1) = 3$
- 31. Prove that $div(curl \, \bar{v}) = 0$
- 32. If $\overline{F} = (3x^2 + 6y)\overline{i} 14yz\overline{j} + 20xz^2\overline{k}$, evaluate $\int_C \overline{F} \cdot d\overline{r}$, from (0,0,0) to (1,1,1) along the paths.
 - (i) $x = t; y = t^2; z = t^3$
 - (ii) The straight line joining (0,0,0) and (1,1,1)

33. Using Green's theorem evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

(6 x 5 = 30 Marks)

PART D

Answer any *two* questions. Each question carries 10 marks.

- 34. Find the orthogonal trajectories of the family of circles $x^2 + (y c)^2 = c^2$
- 35. Solve completely the system of equations

$$x + 3y - 2z = 0$$

$$2x-y + 4z = 0$$

$$x - 11y + 14z = 0$$

36. Verify Stokes theorem for $\overline{F} = [y, z, x]$, S is the paraboloid $z = f(x, y) = 1 - (x^2 + y^2)$, $z \ge 0$ and C is its boundary.

(2 x 10 = 20 Marks)