19U300

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CBCSS - UG)

CC19U MTS3 C03 - MATHEMATICS - III

(Mathematics - Complementary Course)

(2019 Admission - Regular)

Time: 2.00 Hours

Maximum: 60 Marks

Credit: 3

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

1. Find the parametric equation of the tangent line to the curve $x = t, y = \frac{1}{2}t^2, z = \frac{1}{3}t^3$ at t = 2.

^{2.} Describe the level surfaces of the function $f(x,y,z) = rac{x^2}{9} + rac{z^2}{4}$

- 3. Find the gradient of the function $F(x, y, z) = xy \cos yz$
- 4. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, prove that $curl \quad \vec{r} = \vec{0}$
- 5. Evaluate $\int_c 2xy dx$ on the curve $x = 5\cos t, y = 5\sin t, \quad 0 \le t \le \frac{\pi}{4}$
- 6. Determine whether the vector field $\mathbf{F}(x,y) = -ye^{-xy}\mathbf{i} xe^{-xy}\mathbf{j}$ is conservative.
- 7. Find the Jacobian of the transformation $x = r \cos \theta$, $y = r \sin \theta$.
- 8. Define a region in the complex plane.
- 9. Show that the Cauchy Riemann equations are satisfied for $f(z) = z^3$ at every point.
- 10. Find the value of ln(-1-i)
- 11. Find the value of $\oint_C rac{(z^2-9)}{\cosh z} dz$, where C is the unit circle |z|=1
- 12. Evaluate $\oint_C \frac{1+2e^z}{z} dz$ where C is |z| = 1

(Ceiling: 20 Marks)

Part B (Short essay questions)

Answer *all* questions. Each question carries 5 marks.

- 13. If $\mathbf{r}(t) = \mathbf{i} + t\mathbf{j} + t^2\mathbf{k}$ gives the position vector of a moving particle. Find the tangential and normal components of acceleration at any time t.
- 14. Find an equation of the tangent plane to the graph of $x^2 4y^2 + z^2 = 16$ at (2, 1, 4).
- 15. Evaluate $\iint_R x e^{y^2} dA$ over the region R in the first quadrant bounded by the graphs of $y = x^2$, x = 0 and y = 4.
- 16. Consider the surface of the sphere $x^2 + y^2 + z^2 = a^2$; a > 0. Find two orientations of the surface.
- 17. Convert the point (-5, -5, 0) given in rectangular coordinates to spherical coordinates.
- 18. Express the complex number $3i^5 2i^3 3i^2 + 5i 9$ in the form a + ib.
- 19. Compute the circulation and net flux for the function $f(z) = \overline{z}$ over the square C with vertices z = 0, z = 1, z = 1 + i, z = i.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. Each question carries 10 marks.

- 20. Verify Green's theorem by evaluating both the integrals, $\oint_C ((x-y)dx + xydy) = \iint_R (y+1)dA$ where C is the triangle with vertices (0,0), (1,0), (1,3) taken in anticlockwise direction.
- 21. a) Evaluate $\int_{\pi}^{i} e^{z} \cos z dz$ b) Evaluate $\int_{i}^{i+1} z e^{z} dz$

 $(1 \times 10 = 10 \text{ Marks})$
