19P306S

(Pages: 2)

Name	
Reg. No	

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020

(CUCSS-PG)

(Supplementary/Improvement)

CC18P MT3 C13 – COMPLEX ANALYSIS

(Mathematics)

(2018 Admission)

Time: Three Hours

Maximum : 36 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Find the point of **S** corresponding to the point $1 + i \in \mathbb{C}$ in the stereographic projection.
- 2. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a^n z^n$, $a \in \mathbb{C}$.
- 3. Show that a Mobius transformation T satisfies $T(0) = \infty$ and $T(\infty) = 0$ iff $Tz = \frac{a}{z}$ for some $a \in \mathbb{C}$.
- 4. Let γ be a rectifiable curve and f is a function continuous on $\{\gamma\}$, then prove that $\int_{-\gamma} f = -\int_{\gamma} f$
- 5. If $\gamma: [0,1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$. Show that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.
- 6. Show that a bounded entire function is a constant.
- 7. Evaluate $\int_{\gamma} \frac{z^2 1}{z^2 + 1} dz$ where γ is the circle |z i| = 1 in the clockwise direction around the circle.
- 8. State and prove independence of path theorem.
- 9. When two rectifiable curves are said to be FEP homotopic?
- 10. Determine the nature of the singularity of $f(z) = \frac{\cos z 1}{z}$ at z = 0.
- 11. Find the residue at the singular points of the function $f(z) = \frac{2z}{(z+4)(z-1)^2}$
- 12. Define the term meromorphic functions. Give example.
- 13. If |a| < 1 and φ_a is a Mobius transformation defined by $\varphi_a(z) = \frac{z-a}{1-\bar{a}z}$. Show that $(\varphi_a)^{-1} = \varphi_{-a}$
- 14. State and prove the second version of maximum modulus principle.

$(14 \times 1 = 14 \text{ Weightage})$

PART B

Answer any seven questions. Each question carries 2 weightage.

- 15. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ has a radius of convergence R > 0. Prove that f is infinitely differentiable on B(a; R).
- 16. Show that $u(x, y) = 4xy x^3 + 3xy^2$ is harmonic. Also find its harmonic conjugate.
- 17. State and prove symmetry principle.
- 18. If γ is piecewise smooth and $f:[a,b] \to \mathbb{C}$ is continuous then prove that

$$\int_{a}^{b} f d\gamma = \int_{a}^{b} f(t)\gamma'(t) dt$$

- 19. Evaluate $\int_{\gamma} \frac{z^2+1}{z(z^2+4)} dz$, where $\gamma(t) = re^{it}$, $0 \le t \le 2\pi$ for all possible values of r such that 0 < r < 2 and $2 < r < \infty$.
- 20. If G is simply connected and $f: G \to \mathbb{C}$ is analytic in G. show that f has a primitive in G.
- 21. Let G be an open set and let $f: G \to \mathbb{C}$ be a differentiable function, then prove that f is analytic on G.
- 22. State and prove residue theorem.
- 23. Evaluate $\int_0^{\pi} \frac{1}{(a+\cos\theta)^2} d\theta$ where a > 1.
- 24. State and prove Rouche's theorem.

$(7 \times 2 = 14 \text{ Weightage})$

PART C

Answer any two questions. Each question carries 4 weightage.

- 25. If z_1, z_2, z_3, z_4 be four distinct points in \mathbb{C}_{∞} . Prove that (z_1, z_2, z_3, z_4) is a real number iff all four points lie on a circle.
- 26. If $f: G \to \mathbb{C}$ is analytic and $\overline{B}(a; r) \subset G$. Then show that

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw, \text{ where } \gamma(t) = a + re^{it}, \ 0 \le t \le 2\pi. \text{ Using this result}$$

evaluate
$$\int_{\gamma} \frac{e^z - e^{-z}}{z^n} dz$$
 where n is a positive integer and $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$

- 27. State and prove Laurent series development theorem.
- 28. Show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$.

 $(2 \times 4 = 8 \text{ Weightage})$