Name: ..... Reg. No.: .....

# THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020 (CUCSS-PG) **CC19P MTH3 C12 - COMPLEX ANALYSIS** (Mathematics)

(Pages: 2)

(2019 Admission Regular)

Time: Three Hours

Maximum : 30 Weightage

## PART A

Answer all questions. Each question carries 1 weightage.

- 1. Suppose  $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$  and  $S_T : \mathbb{R}^2 \to S \setminus \{\mathbb{N}\}$  is stereographic projection such that  $T(z) = (x_1, x_2, x_3)$  where z = x + iy, express  $x_1, x_2, x_3$  in terms of x and y. Also, find the corresponding images of 0, 1 + i and 3 + 2i.
- 2. By expressing  $\cos z$  and  $\sin z$  in terms of exponential function, show that  $\cos^2 z$  +  $\sin^2 z = 1.$
- 3. Show that a Möbius transformation can have at most two fixed points unless it is the identity function.

4. If 
$$\gamma : [0, 2\pi] \to \mathbb{C}$$
 by  $\gamma(t) = e^{int}$  where  $n \in \mathbb{Z}$ , find  $\int_{\gamma} \frac{1}{z} dz$ .

- 5. State and prove Open Mapping Theorem.
- 6. Evaluate  $\int_{\infty} \frac{2z+1}{z^2+z+1} dz$ .
- 7. Justify that  $\frac{\sin z}{z}$  has a removable singularity and it is isolated.
- 8. State Hadamard's three circle theorem.

 $(8 \times 1 = 8$  Weightage)

#### PART B

Answer any two questions from each unit. Each question carries 2 weightage.

#### UNIT I

- 9. If  $\sum a_n(z-a)^n$  is a given power series with radius of convergence R, then prove that  $R = \lim \left| \frac{a_n}{a_{n+1}} \right|$ , if this limit exists.
- 10. Define the cross ratio of  $z_1, z_2, z_3$  and  $z_4$ . Prove that if T is a Möbius transformation and  $z_2, z_3$  and  $z_4$  are distinct points, then  $(z_1, z_2, z_3, z_4) = (T(z_1), T(z_2), T(z_3), T(z_4)).$

19P302

11. If  $\gamma$  is a piecewise smooth and  $f:[a,b] \to \mathbb{C}$  is continuous then, show that  $\int_a^b f d\gamma = \int_a^b f(t)\gamma'(t)dt.$ 

# UNIT II

- 12. Evaluate  $\int_{\gamma} \frac{z}{(z-1)^2} dz$  where  $\gamma(t) = 1 + e^{it}$  and  $0 \le t \le 2\pi$ .
- 13. Suppose  $\gamma$  is a closed rectifiable curve in  $\mathbb{C}$ , then define the index of  $\gamma$  with respect to a point  $a \notin \gamma$ . Can it be generally a real number?
- 14. State and prove Independence of path theorem.

### UNIT III

15. Calculate the integral:  $\int_0^{\pi} \frac{d\theta}{(a+\cos\theta)^2}$  where a > 0.

16. State and prove Argument Principle.

17. State and prove Schwarz lemma.

 $(6 \times 2 = 12 \text{ Weightage})$ 

## PART C

Answer any two questions. Each question carries 5 weightage.

- 18. Let G be either the whole plane or  $\mathbb{C}$  or some open disk, if  $u: G \to \mathbb{R}$  is a harmonic function, then prove that u has a harmonic conjugate.
- 19. If  $z_1, z_2, z_3$  and  $z_4$  are four distinct points in  $\mathbb{C}$ , then prove  $(z_1, z_2, z_3, z_4)$  is a real number if and only if all four points lie on a circle.
- 20. Evaluate  $\int_{\gamma} \frac{e^z e^{-z}}{z^4} dz$  where  $\gamma$  is one of the curves depicted below. Also justify for each case



21. Evaluate  $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx$ .

 $(2 \times 5 = 10 \text{ Weightage})$ 

\*\*\*\*\*\*