(Pages: 2)

Name	•••	•••	•••	••••
Reg. No			•••	

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020 (CBCSS-PG) CC19P MTH3 C13 - FUNCTIONAL ANALYSIS

(Mathematics)

(2019 Admission Regular)

Time: Three Hours

Maximum : 30 Weightage

Part A (Short answer questions)

Answer *all* questions. Each question has 1 weightage.

- 1. Define a normed space and give an example.
- 2. Define a quotient space and prove that two cosets of a linear space either coincide or they are disjoint.
- 3. If $z \in I[x, y]$, prove that ||x y|| = ||x z|| + ||z y||.
- 4. State and prove Pythagorean Theorem.
- 5. If f is a non zero linear functional on a linear space, prove that *codim* ker f = 1.
- 6. Prove that $|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \cdot \langle y, y \rangle^{1/2}$, for all vectors x, y in a linear space H with inner product $\langle \cdot, \cdot \rangle$.
- 7. Prove that *A* is a bounded operator if and only if it is a continuous operator.
- 8. Show that the subset of a precompact set is precompact.

(8 x 1 = 8 Weightage)

Part B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Prove that $||a + b||_p \le ||a||_p + ||b||_p$; $1 \le p \le \infty$, for every sequence of scalars $a = (a_i), b = (b_i).$
- 10. Prove that complement of an open set is closed. Also prove that union of open sets is open.
- 11. Prove that C[a, b] is a Banach space.

UNIT II

12. Prove that the Hilbert space *H* is separable if and only if there exists a complete orthonormal system $\{e_i\}_{i\geq 1}$.

19P303

- 13. Prove that for every closed subspace L of H, $L \oplus L^{\perp} = H$ and $(L^{\perp})^{\perp} = L$.
- 14. State and prove Bessel's inequality. Also prove that for any $x \in H$ and any orthonormal system $\{e_i\}_1^\infty$, there exists a $y \in H$ such that $y = \sum_{i=1}^\infty \langle x, e_i \rangle e_i$.

UNIT III

- 15. Prove or disprove. " $L(X \mapsto Y)$ is always a Banach space, where X,Y are normed spaces." Justify your answer.
- 16. If $A: X \mapsto Y$ is a compact operator, then prove that $A^*: Y^* \mapsto X^*$ is compact.
- 17. If A is an operator on $L_2[a, b]$ defined by $Af = k(t) \cdot f(t)$, where k(t) is a continuous function on [a, b], then prove that A is a bounded linear operator and $||A|| \coloneqq M \coloneqq \max_{a \le t \le b} |k(t)|.$

(6 x 2 = 12 Weightage)

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. (a) State and prove completion theorem.
 - (b) Prove that l^{∞} is a Banach space.
- 19. State and prove Hölder's inequality for both the scalar sequences and integrable functions.
- 20. (a) State and prove Riesz representation theorem.
 - (b) Give an example for a non-separable Hilbert space.
- 21. (a) Prove that *M* is relatively compact if and only if for every $\epsilon > 0$ there exists a finite ϵ –net in *M*.
 - (b) Prove that strong convergence is weaker than norm convergence.

(2 x 5 = 10 Weightage)
