19P301

Name :	
Reg. No :	

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020 (CUCSS-PG)

CC19PMTH3C11-MULTIVARIABLE CALCULUS AND GEOMETRY

(Mathematics)

(2019 Admission - Regular)

Time: Three hours

Maximum : 30 weightage

PART A

Answer **all** questions. Each question carries 1 weightage.

- 1. (a) Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $\mathbf{x} \in \mathbb{R}^n$. Show that A is differentiable at \mathbf{x} . (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (x + 2y, x). Find T'(1, 0)?
- 2. Show that $det [A] \neq 0$, if A is an invertible linear operator on \mathbb{R}^n .
- 3. (a) Find a parametrization of the level curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
 - (b) Find the Cartesian equation of the parametrized curve $\gamma(t) = (e^t, t^2)$.
- 4. Prove that any reparametrization of a regular curve is regular
- 5. Compute the curvature of the curve $\gamma(t) = \left(\frac{4}{5}\cos t, 1 \sin t, -\frac{3}{5}\cos t\right)$.
- 6. Define ruled surface and give an example for a ruled surface.
- 7. Find the first fundamental form of the plane $\sigma(u, v) = \mathbf{a} + u\mathbf{p} + v\mathbf{q}$ with \mathbf{p} and \mathbf{q} are perpendicular unit vectors.
- 8. Define Gaussian and Mean curvatures.

 $(8 \times 1 = 8$ weightage)

PART B

Two questions should be answered from each unit. Each question carries 2 weightage.

UNIT I

- 9. Prove that a linear operator A on a finite-dimensional vector space X is one-to-one if and only if the range of A is all of X.
- 10. Prove that to every $A \in L(\mathbb{R}^n, \mathbb{R}^1)$ corresponds a unique $\mathbf{y} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x} \in \mathbb{R}^n$. Also show that $||A|| = |\mathbf{y}|$.
- 11. (a) Suppose $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and A_x is invertible. Prove that for each $k \in \mathbb{R}^m$ there exists a unique $h \in \mathbb{R}^n$ such that A(h, k) = 0.
 - (b) State implicit function theorem.

UNIT II

- 12. Find the torsion of the circular helix $\gamma(\theta) = (a \cos \theta, a \sin \theta, b\theta)$.
- 13. Show that the unit sphere S^2 is a smooth surface.
- 14. Suppose S_1 and S_2 are smooth surfaces. Let $f : S_1 \to S_2$ be a local diffeomorphism and let γ be a regular curve on S_1 . Show that $f \circ \gamma$ is a regular curve on S_2 .

UNIT III

- 15. Show that the area of a surface patch is unchanged by reparametrization.
- 16. Compute the second fundamental form of the unit sphere.
- 17. Find the Gaussian curvature of a surface of revolution $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u)),$ where f > 0 and $\dot{f}^2 + \dot{g}^2 = 1.$

$(\mathbf{6} \times \mathbf{2} = \mathbf{12} \text{ Weightage})$

PART C

(Answer any two questions. Each question carries 5 weightage.)

- 18. Suppose f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Prove that $f \in \mathscr{C}'(E)$ if and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \leq i \leq m, 1 \leq j \leq n$.
- 19. (a) Let Ω be the set of all invertible linear operators on \mathbb{R}^n . If $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and $||B A|| \cdot ||A^{-1}|| < 1$, then show that $B \in \Omega$.
 - (b) State and prove the contraction principle.
- 20. (a) Prove that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
 - (b) Prove that a unit-speed reparametrization of a regular closed curve is closed.
- 21. (a) Show that the principal curvatures at a point are the maximum and minimum values of the normal curvature of all curves on the surface that pass through the point.
 - (b) Let S be a connected surface of which every point is an umbilic. Show that S is an open subset of a plane or a sphere.

 $(2 \times 5 = 10 \text{ Weightage})$
