(Pages: 2)

Name..... Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2020 (CUCSS-PG)

CC19P ST3 C12 - STOCHASTIC PROCESSES

(Statistics)

(2019 Admission Regular)

Time : Three Hours

Maximum : 30 Weightage

PART A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Describe classification of the stochastic processes with suitable examples.
- 2. Define recurrent and transient states with examples.
- 3. What is (i) non homogeneous Poisson process and (ii) compound Poisson processes
- 4. Describe Birth and Death model.
- 5. Describe (i) Renewal reward process (ii) Regenerative process.
- 6. What do you mean by queue? Briefly explain Kendall's Notation.
- 7. Describe Brownian motion.

(4 x 2 = 8 Weightage)

PART B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Show that any Markov chain is completely described by one step transition probabilities and the initial distribution.
- 9. Check whether the following Markov chain with four states 0, 1, 2, and 3 having TPM given below is ergodic

$$\begin{bmatrix} 1/3 & 2/3 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

10. If {*N*(*t*)} is a Poisson process, derive auto-correlation between *N*(*t*) and *N*(*t*+*s*), *t*, *s* > 0 11. If E(R) < ∞ and E(X) < ∞ Then show that:

- (i) with probability 1, $\lim_{t \to \infty} \frac{R(t)}{t} = \frac{E(R)}{E(X)}$ (ii) $\lim_{t \to \infty} \frac{E(R(t))}{t} = \frac{E(R)}{E(X)}$
- 12. Describe insurance ruin problem.
- 13. For an M|M|1 queueing model, find the expected number of customers in the system and the queue

19P362

14. What are network of queues? Illustrate with a suitable example.

(4 x 3 = 12 Weightage)

PART C

Answer any two questions. Each question carries 5 weightage.

15. a) For a continuous time Branching process, obtain mean and variance

b) Show that (i) $P_n(s) = P_{n-1}(P(s))$ (ii) $P_n(s) = P(P_{n-1}(s))$

- 16. Let {N(t), $t \ge 0$ } and {M(t), $t \ge 0$ } be independent non homogeneous Poisson processes with respective intensity functions $\lambda(t)$ and $\mu(t)$ and let N*(t) = N(t) + M(t). Then show that the following are true
 - a) {N*(t), $t \ge 0$ } is a non homogeneous Poisson process with intensity functions $\lambda(t) + \mu(t)$
 - b) Given that an event of the {N*(t)} process occurs at time t, then independent of what occurred prior to t, the event t was from the{N(t)} process with probability $\frac{\lambda(t)}{\lambda(t)+\mu(t)}$
- 17. For a renewal process $\{N(t), t \ge 0\}$, show that
 - a) With probability $1, \frac{N(t)}{t} \to \frac{1}{\mu}$ as $t \to \infty$.

b)
$$\frac{m(t)}{t} \to \frac{1}{\mu} \text{ as } t \to \infty$$

18. Describe M|G|1 queue

(2 x 5 = 10 Weightage)
