(Pages: 2)

Name	•••	 	
Reg. No		 	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020 (CUCSS - PG)

CC15P MST2 C09 - TESTING OF STATISTICAL HYPOTHESES

(Statistics)

(2019 Admission - Regular)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer any *four* questions. Each question carries 2 weightage.

- 1. (a) Define simple and composite hypothesis with example.
 - (b) Define Type I error, Significance level and Power of the test.
- 2. (a) What are most powerful test and uniformly most powerful test?
 - (b) Define UMP unbiased test.
- 3. (a) Define locally most powerful test.
 - (b) Define Bayesian test.
- 4. Explain Mann-Whitney-Wilcoxon test for two sample problem.
- 5. Explain Spearman rank correlation test.
- 6. Define SPRT. Explain its advantages.
- 7. (a) State Wald's identity.
 - (b) Define OC function of SPRT.

(4 x 2 = 8 Weightage)

PART B

Answer any *four* questions. Each question carries 3 weightage.

- 8. State and prove Karlin-Rubin theorem.
- 9. Obtain the MP size α test for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 (> \theta_0)$, based on a sample of size *n* from $f_{\theta}(x) = e^{-(x \theta)}, x \ge \theta$.
- 10. Let a random sample of size n drawn from a normal population with mean μ and variance σ^2 . Obtain likelihood ratio test of $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$ when population mean μ is known.
- 11. (a) Define Kendall's tau. State its properties.
 - (b) Explain Chi-square test for homogeneity.
- 12. (a) Explain two sample Kolmogorov Smirnov test.
 - (b) Explain median test for two samples.

19P261

- 13. Let X have the distribution $f(x; \theta) = \theta^{x} (1 \theta)^{1-x}$, $x = 0, 1, 0 < \theta < 1$. Construct the SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$.
- 14. Define ASN function. Let $X \sim P(\lambda)$, Consider $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1(\lambda > 0)$. Derive SPRT and find ASN of the test.

(4 x 3 = 12 Weightage)

PART C

Answer any *two* questions. Each question carries 5 weightage.

- 15. (a) State and Prove generalized Neyman-Pearson lemma.
 - (b) Obtain UMP test for testing H₀: θ < θ₀ againstH₁: θ ≥ θ₀ based on a sample of size n from U(0,θ).
- 16. (a) What is α similar test? Show that an unbiased size α test with continuous power function is α similar on the boundary.
 - (b) Define invariant test. To test $H_0: X \sim N(\theta, 1)$, against $H_1: X \sim C(1, \theta)$, a sample of size two is available on X. Find a UMP invariant test of H_0 against H_1 .
- 17. Explain Wilcoxon signed rank test. Discuss its null distribution. What are the advantages of Wilcoxon signed rank test over sign test?
- 18. (a) Determine the expressions for the boundary values A and B of SPRT with strengths(α , β)
 - (b) Show that SPRT terminates with probability one.

(2 x 5 = 10 Weightage)
