18P450

(Pages: 2)

Name:		 •••	 	 •			•		•
Reg. N	0	 	 	 	•	•			•

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2020

(CUCSS - PG)

(Regular/Improvement/Supplementary)

CC15P ST4 C13 – MULTIVARIATE ANALYSIS

(Statistics)

(2015 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Show that $X \sim N_p(\mu, \Sigma)$ if and only if $T'X \sim N_1(T'\mu, T'\Sigma T)$ where T is any real vector.
- 2. If $X \sim N_p(0, I)$, then show that a quadratic form X'AX and the linear form B'X are independent if and only if AB = 0.
- 3. Distinguish between partial and multiple correlations.
- 4. Show that Wishart distribution is a matrix variate generalization of χ^2 distribution.
- 5. Show that every principal sub matrices of a Wishart matrix is again Wishart.
- 6. Define canonical correlation.
- 7. Show that Hotelling's T^2 statistic is invariant under non-singular transformation.
- 8. Establish the relation between Hotelling's T^2 and Mahalnobis D^2 statistics.
- 9. Write a short note on sphericity test.
- 10. What do you mean by Fisher's linear discriminant function?
- 11. How factor analysis and principal components are connected?
- 12. Explain how Fisher's discriminant function is related to Mahalnobis D^2 .

 $(12 \times 1 = 12 \text{ Weightage})$

Part B

Answer any *eight* questions. Each question carries 2 weightage.

13. Let $X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}$ be a p-variate multivariate normal random vector. Obtain the

necessary and sufficient condition for the independence of $X^{(1)}$ and $X^{(2)}$.

- 14. Show that \overline{X} and *S* are independently distributed when sampling from a multivariate normal population.
- 15. Obtain the conditional distribution of X_1 given X_2 if (X_1, X_2) has a bivariate normal distribution with the parameters $\mu_1, \mu_2, \sigma_{1,}^2 \sigma_2^2$ and ρ .

- 16. Obtain the MLE of Σ when sampling from Multivariate Normal population with parameters 0 and Σ .
- 17. Derive the null distribution of the sample correlation coefficient.
- 18. Obtain the characteristic function of a Wishart distribution.
- 19. Explain the problem of symmetry based on T^2 statistic.
- 20. Describe how you will test the equality of covariance matrices of 'q' multivariate normal distributions.
- 21. Derive the test criterion for testing independence of sub vectors of *X* where *X* follows $N_{\rm p}(\mu, \Sigma)$.
- 22. Derive the Baye's procedure of classification into one of the two populations whose multivariate normal parameters are known.
- 23. Explain how the reduction in dimension is achieved through principal component analysis.
- 24. Describe the orthogonal factor model in Factor Analysis.

 $(8 \times 2 = 16 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 4 weightage.

- 25. State and prove the Cochran's theorem for the independence of quadratic forms.
- 26. Derive the null distribution of the multiple correlation coefficient.
- 27. Explain multivariate Fisher-Behren problem.
- 28. Explain the role of eigenvalues and eigenvectors in Principal Component analysis. Describe an iterative procedure to calculate sample principal components.

 $(2 \times 4 = 8 Weightage)$
