(Pages: 2)

Name	
Reg. No	

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2020

(CUCBCSS – UG)

CC15U MAT2 B02/CC18U MAT2 B02 - CALCULUS

(Mathematics – Core Course)

(2015 to 2018 Admissions – Supplementary/Improvement)

Time: Three Hours

Maximum: 80 Marks

Part 1 (Objective type questions)

Answer *all* questions. Each question carries 1 mark.

- 1. Define Point of inflection of a function.
- 2. Find the critical points of f(x) if f'(x) = x (x 1).
- 3. What is the work done by a force $F(x) = 16 \frac{4x}{5}$ lb along the x- axis from x = 0 to x = 20?
- 4. If $f = x^5 3x^4 + 9$, find df.
- 5. State the Max Min Theorem for Continuous Functions.
- 6. Find the linearization of $f(x) = x^4$ at x = 1.
- 7. If $P = \{0,3,5,9,10\}$ is a partition of [0,10] then ||P|| = ------
- 8. If f is continuous and $\int_1^3 f(x) dx = 6$, $\int_1^5 f(x) dx = 7$, then $\int_3^5 f(x) dx = ----$
- 9. If f is integrable on [a, b], its average (mean) value on [a, b] is ------
- 10. If $y = \int_0^x \sqrt{1 + t^2} dt$ then $\frac{dy}{dx} = - - -$
- 11. Define a smooth function.
- 12. Give an example of a function which is not Riemann integrable.

(12 x 1 = 12 Marks)

Part II (Short answer type questions)

Answer any *nine* questions. Each question carries 2 marks.

- 13. Verify Rolle's Theorem for the function $f(x) = \frac{x^3}{3} 3x$, in the interval [-3, 3]
- 14. Find the critical points of $f(x) = \frac{x^3}{3} 2x^2 + 4x$, $0 \le x < \infty$.
- 15. Prove that the exponential function e^x is increasing on \Re .
- 16. Find the function f(x) whose derivative is 2x and whose graph passes through the point (-2, 3).
- 17. Evaluate $\lim_{x \to -\infty} \frac{\sqrt[3]{x 5x + 3}}{\frac{2}{2x + x^{\frac{2}{3}} 4}}.$
- 18. A 70 lb child and a 120 lb child are balancing on a seesaw. The 70 lb child is at 5 ft from the fulcrum. How far from the fulcrum is the 120 lb child?
- 19. Evaluate $\sum_{k=1}^{7} (-2k)$.

19U201S

- 20. Use Max-Min Inequality to find upper and lower bounds for the value of $\int_0^1 \frac{1}{1+x^2} dx$.
- 21. Determine two positive numbers whose sum is 15 and the sum of whose squares is minimum.
- 22. Consider $f(x) = -x^2$, [0, 1]. Partition the interval into 4 subintervals of equal length and find the Riemann sum $\sum_{k=1}^{4} f(c_k) \Delta x_k$ where c_k is the left end point of each subinterval.
- 23. Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\pi/4$.
- 24. Show that if f is continuous on [a, b], $a \neq b$ and if $\int_a^b f(x) dx = 0$ then f(x) = 0 at least once in [a,b].

(9 x 2 = 18 Marks)

Part III (Short essay or paragraph questions)

Answer any *six* questions. Each question carries 5 marks.

- 25. State and prove Mean Value Theorem for derivatives.
- 26. Find all asymptotes of the function $y = \frac{x^2 2}{x^2 1}$.
- 27. Find the average value of $f(x) = x^2 1$ on $[0,\sqrt{3}]$. At what point or points in the given interval does the function assume its average value?
- 28. Show that the center of mass of a straight thin strip or rod of constant density lies half way between its ends.
- 29. Find $\frac{dy}{dx}$ if $y = \int_1^{x^2} \cos t \, dt$.
- 30. Find the volume of the solid generated by revolving the region between the parabola $x = y^2+1$ and the line x = 3 about the line x = 3.
- 31. Prove that $\int_{a}^{b} x \, dx = \frac{b^2}{2} \frac{a^2}{2}, 0 < a < b.$
- 32. Estimate the sum of the square roots of the first n positive integers $\sqrt{1} + \sqrt{2} + \cdots + \sqrt{n}$.
- 33. Find the area lying above x-axis, and included between the circle $x^2+y^2 = 2ax$ and the parabola $y^2 = ax$.

(6 x 5 = 30 Marks)

Part IV (Essay questions)

Answer any two questions. Each question carries 10 marks.

- 34. Find the local maxima and minima of the function $f(x) = 2 \cos 2x \cos 4x$, $0 \le x \le \pi$, using second derivative test.
- 35. Graph the function $y = \frac{x^3 1}{x^2 1}$.
- 36. Find the area of the surface generated by revolving the curve $x = 2\sqrt{4 y}$, $0 \le y \le \frac{15}{4}$, about y-axis.

 $(2 \times 10 = 20 \text{ Marks})$