19U203S

Time: Three Hours

- 1. Define Shift operator E.

- 4. Write the Gauss Quadrature formula.

- 7. Define algebraic equation, give an example.
- 9. Write the Newton Raphson formula.
- 10. Express the following equations in matrix form

(Pages: 2) Name: Reg. No..... SECOND SEMESTER B.C.A DEGREE EXAMINATION, APRIL 2020 (CUCBCSS - UG) CC15U BCA2 C04 - NUMERICAL METHODS IN C (Complementary Course) (2015, 2016 Admissions - Supplementary) Maximum: 80 Marks Part A Answer *all* questions. Each question carries 1 mark. 2. Define Newton's Forward difference interpolation formula. 3. Express the Central difference operator δ in terms of shift operator E. 5. What is the formula to find $\int_a^b f(x) dx$ using simpson's $\frac{1}{3}$ rule? 6. The numbers in the computer word can be stored in two forms. Which are they? 8. Bisection method is based on the repeated application of the Theorem. 3x + 5y + 2z = 3, 2x - 2y + 8z = 6, 3x + y + z = 6(10 x 1 = 10 Marks)Part B Answer all questions. Each question carries 2 marks. 13. Solve $x^3 - x - 1 = 0$ for the root between x = 1 and x = 2, by using bisection 14. Solve 2x + 3y = 8, x - 2y + 3 = 0 using Cramer's rule. 15. Using Regula- falsi method, find a real root of the equation, $x^{2.2} = 69$, between 5 and 8.

- 11. Write the second order Runge-Kutta formula.
- 12. Evaluate $(\Delta \nabla) x^2$ taking interval of difference as 'h'
- method.
- Write three steps.

(5 x 2 = 10 Marks)

Turn Over

Part C
Answer any <i>five</i> questions. Each question carries 4 marks.
16. Construct Newton's forward difference interpolating polynomial for the following data,
x: 0.1 0.2 0.3 0.4 0.5
y: 1.40 1.56 1.76 2.00 2.28
17. Prove that
a) $\delta = 2\sinh(\frac{hD}{2})$ b) $\mu = \cosh(\frac{hD}{2})$
18. Evaluate $\int_{1}^{2} \frac{dx}{x}$ using Trapizoidal rule, taking h = 0.25
19. Given the following table
x : 1 2 3 4 5
log x : 0 0.6931 1.0986 1.3862 1.6094
Evaluate $\int_{1}^{5} logx dx$ using Simpson's $\frac{1}{3}$ rule
20. Solve the equations $x + 2y + z = 3$, $2x + 3y + 3z = 10$, $3x - y + 2z = 13$ by Gauss
elimination method.
21. Find a positive root of the equation $xe^x = 1$, which lies between 0 and 1.
22. Find the LU factorization of the matrix $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$
23. Using Gauss-Jordan method find the inverse of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix}$

(5 x 4 = 20 Marks)

Part D

Answer any *five* questions. Each question carries 8 marks.

- 24. Write the algorithm of method of False position and using it, find a real root of the equation,
 - $f(x) = x^3 + x 1 = 0$ near x = 1.
- 25. Apply Cramer's rule to solve the equations

x + 2y - z = 2, 3x + 6y + z = 3, 3x + 3y + 2z = 3.

- 26. Set up a Newton iteration for computing the square root of a given positive number. Using the same find the square root of 2 exact to six decimal places.
- 27. Use Runge-Kutta method of the fourth order, solve the differential equation $\frac{dy}{dx} = x + y$,

y(0) = 1, for the range $0 \le x \le 0.3$ taking h = 0.1

28. Solve $\frac{dy}{dx} = x - y^2$ using Taylor series given y(0) = 1. Also find y(0.1) correct into four decimal places.

29. Find y at x = 21 and x = 28 given that Х : 20 23 26 29 0.3420 0.3907 0.4384 0.4848 : у 30. Using Modified Euler method obtain the solution of the differential equation $\frac{dy}{dx} = 1 - y$, y(0) = 0 for the range $0 \le x \le 0.2$ by taking h = 0.131. Find y'(x) given Х 0 1 2 3 4 :

19U203S

y(x) : 1 1 15 40 85

 $(5 \times 8 = 40 \text{ Marks})$