18U404

(Pages:

FOURTH SEMESTER B.Sc. DEGREE

(CUCBCSS

(Regular/Supplementar

CC15U MAT4 B04/ C

THEORY OF EQUATIONS, MATRI

(Mathematics - Co (2015 Admission

Time: Three Hours

Part A

Answer all questions. Each question carries 1 mark.

- 1. State factor theorem.
- 3. Define reciprocal equation.
- 4. State Descarte's rule of signs.
- 5. Define rank of a matrix.
- 6. Let A be a 3x3 matrix whose rank is 2. Suppose that the elements of first row of A is multiplied by 4. What will be the rank of the new matrix?
- 7. State True/False. A homogeneous system is always consistent.
- 8. The eigenvalues of a triangular matrix are same as its ------
- 9. Find parametric equations for the line through the origin and parallel to the vector $2\mathbf{j} + \mathbf{k}$.
- 10. Identify the surface $x^2 + y^2 + 4z^2 = 10$.
- 11. If $\mathbf{r}(t) = (\cos t) \mathbf{i} + (\sin t) \mathbf{j} + 6 \mathbf{k}$, then $\lim_{t \to \frac{\pi}{4}} \mathbf{r}(t) = \cdots$
- 12. Find the unit tangent vector of the helix $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$.

Part B

Answer any *nine* questions. Each question carries 2 marks.

- 14. By multiplying the roots by a suitable number transform the equation
- $9x^4 3x^3 + 2x^2 + 8x + 7 = 0$ into one with integral coefficient and the leading coefficient unity.
- 15. Remove the second term from the equation $x^3 6x^2 + 4x 7 = 0$.
- 16. Show that the equation $x^6 + 3x^2 5x + 1 = 0$ has at least four imaginary roots.
 - (1)

3)	Name:
	Reg. No
E EXAMINATION, APRIL 2020	
- UG)	
y/Improvement)	
CC18U MAT4 B	604
ICES AND VECTOR CALCULUS	
ore Course)	
onwards)	
	Maximum: 80 Marks

2. Let α, β, γ be the roots of the equation f(x) = 0, then the roots of $f\left(\frac{1}{x}\right) = 0$ are -----

(12 x 1 = 12 Marks)

13. Solve the polynomial equation $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$ of which one root is -1 + i.

Turn Over

17. Find the rank of $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ by reducing into echelon form.

18. Prove that the eigenvalues of a diagonal matrix is same as its diagonal elements.

19. Test for consistency the system of equations x + 2y = 3, 2x + 4y = 7.

20. If two of the eigenvalues of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are 2 and 8, without expanding evaluate

determinant of the matrix.

21. Find the point where the line $x = \frac{8}{3} + 2t$, y = -2t, z = 1 + t intersects the plane 3x + 2y + 6z = 6.

22. Find a spherical coordinate equation for the sphere $x^2 + y^2 + (z - 1)^2 = 1$.

- 23. The vector $\mathbf{r}(t) = (3 \cos t)\mathbf{i} + (3 \sin t)\mathbf{j} + t^2 \mathbf{k}$ gives the position of a moving body at time t. Find the body's speed and direction when t = 2.
- 24. Show that $u(t) = (\sin t) i + (\cos t) j + \sqrt{3} k$ has constant length and is orthogonal to its derivative.

(9 x 2 = 18 Marks)

Part C

Answer any *six* questions. Each question carries 5 marks.

25. Prove that every polynomial of degree n has exactly n roots.

26. If α , β and γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, form an equation whose

roots are $\alpha - \frac{1}{\beta \gamma}$, $\beta - \frac{1}{\gamma \alpha}$, and $\gamma - \frac{1}{\alpha \beta}$

27. Solve $6x^5 + 11x^4 - 33x^3 - 33x^2 + 11x + 6 = 0$

28. Reduce the matrix $A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 7 & 13 \\ 4 & -3 & -1 \end{bmatrix}$ to its normal form and hence determine its rank.

29. Using elementary transformations find the inverse of the matrix $\begin{bmatrix} 2 & 3 & -4 \\ 0 & -4 & 2 \\ 1 & -1 & 5 \end{bmatrix}$

30. Does the following system of equations possess a non-zero (i.e., non-trivial) solution?

$$x + 2y - 3z = 0$$
; $2x - 3y + z = 0$; $4x - y - 2z = 0$.

31. Find the eigen values and find eigen vector corresponding to highest of the eigen value of the

matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

32. Find the distance from (1, 1, 3) to the plane 3x + 2y + 6z = 6.

33. Show that the curvature of a circle of radius a is $\frac{1}{a}$

Part D

- Answer any two questions. Each question carries 10 marks.
- 34. By reducing to standard form solve $x^3 6x^2 + 3x 2 = 0$ by Cardano's method.

theorem obtain A^{-1} and A^{-2} .

36. Find **T**, **N**, **B** and κ for the space curve $\mathbf{r}(t) = (e^t \cos t)\mathbf{i} + (e^t \sin t)\mathbf{j} + 2\mathbf{k}$.

18U404

35. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ and then using the

 $(2 \times 10 = 20 \text{ Marks})$