(Pages: 2)

Name	
Reg.No	

Maximum: 30 Weightage

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P CSS3 E01f - NUMERICAL AND STATISTICAL METHODS

(Computer Science)

(2019 Admission onwards)

Time: Three Hours

PART A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Find the root of the equation $x^{3}_{+}x 1 = 0$ using Bisection method
- 2. Explain different types of Errors with an example
- 3. Using Newton's backward formula find tan (0.26)

Х	0.10	0.15	0.20	0.25	0.30
tan x	0.1003	0.1511	0.2027	0.2553	0.3093

4. Solve the following system of equations using Gauss - Seidal iteration method

$$x + 4y - z = -5$$

 $x + y - 6z = -12$
 $3x - y - z = 4$

- 5. Evaluate $\int_{4}^{5.2} logx \, dx$ using Trapezoidal rule. Take h = 0.2
- 6. A subcommittee of 6 members is to be formed out of a group of 7 men and 4 ladies.Obtain the probability that the subcommittee will consist of

i) Exactly 2 ladies ii) At least 2 ladies iii) At the most 2 ladies

7. State and prove Addition theorem of probability for mutually exclusive events

$(4 \times 2 = 8 \text{ Weightage})$

PART B

Answer any **four** questions. Each question carries 3 weightage.

- 8. Using Newton Raphson method compute the real root of the equation 3x = cosx+1
- 9. Apply Gauss Jordan method to solve the following equations

$$2x - 3y + z = -1$$

 $x + 4y + 5z = 25$
 $3x - 4y + z = 2$

10. Use Runge-kutta method to find the value of y (0.1) and y (0.2) given that $\frac{dy}{dx} = x + y$,

y (0)= 1 And h = 0.1

11. Evaluate $\int_{1}^{3} (2x - 1) dx$ using Simpson's ¹/₃ and ³/₈ rules taking h = 0.25

20P339

12. Define probability density function of with properties.

Examine whether the following is a probability density function

$$\begin{split} f(x) &= 2x & \text{ if } \quad 0 < x \leq 1 \\ &= 4\text{-}2x \quad \text{if } \quad 1 < x \leq 2 \\ &= 0 \quad \text{else where} \end{split}$$

13. Solve the linear programming problem graphically

$$\begin{array}{l} \text{Maximize } z = 2x_1 + 3x_2\\ \text{Subject to}\\ x_1 + x_2 \leq 30\\ x_2 \geq 3\\ 0 \leq x_2 \leq 12\\ x_1 - x_2 \geq 0\\ 0 \leq x_1 \leq 2 \end{array}$$

14. Explain Duality in linear programming problem with an example

 $(4 \times 3 = 12 \text{ Weightage})$

PART C

Answer any *two* questions. Each question carries 5 weightage.

15. Find the interpolating polynomial using Lagrange's formula. Hence find f (4.5)

X	1	3	4	6
f(x)	-3	0	30	132

16. Using Milne's Predictor- Corrector method evaluate y (0.4)

$$\frac{dy}{dx} = \frac{1}{3} (1+x^2) y^2, y (0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21$$

17. A company has 4 machines to do 3 jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given in the following table

		Machines			
		1	2	3	4
	Α	18	24	28	32
Jobs	В	8	13	17	19
	С	10	15	19	24

What are the job assignments which will minimize the cost?

18. Solve the following Transportation problem to minimize the total cost of transportation

	Destination					
		1	2	3	4	Supply
Origin	1	14	56	48	27	70
	2	82	35	21	81	47
	3	99	31	71	63	93
	Demand	70	35	45	60	

```
(2 \times 5 = 10 \text{ Weightage})
```