(Pages: 2)

Name	
Reg. No	

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P MTH3 C13 - FUNCTIONAL ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer Type)

Answer *all* questions. Each question carries 1 weightage.

- 1. Define a seminorm and prove that p(x + y) is independent of $y \in E_0$, where p is a seminorm and E_0 is it's kernel.
- 2. If $z \in I(x, y)$, prove that ||x y|| = ||x z|| + ||z y||
- 3. Prove that if $p \ge q \ge 1$, then $l_p \subset l_q$.
- 4. Define inner product and find $\langle x, y \rangle$, if $x, y \in \mathbb{C}^2$; x = (1 + i, 1 i), y = (2i 1, i).
- 5. State and prove the parallelogram law.
- 6. Prove that codim ker f = 1, where $f \in E^{\#}\{0\}$.
- 7. Prove or disprove: "The dual of a normed space is always a Banach space".
- 8. Prove that strong convergence is weaker than norm convergence.

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any six questions. Each question carries 2 weightage.

UNIT I

- 9. Prove that two cosets of a linear space are either coincide or disjoint sets. Also prove that the codimension of c_0 inside the space *c* of convergent sequences is equal to 1.
- 10. If *O* is an open set, then prove that the set $F = O^c$ is closed. Also prove that if *F* is a closed set, then the set $O = F^c$ is open.
- 11. Let E, X_1, X_2 be linear spaces with X_1, X_2 being complete and $T_1: E \to X_1$, $T_2: E \to X_2$ are isometries into dense subspaces of X_1, X_2 respectively. Prove that the natural isometry $T_2 \circ T_1^{-1}: T_1E \to T_2E$ can be extended to an isometry between X_1 and X_2 .

UNIT II

12. If *M* is a convex closed set in the Hilbert space *H*, prove that there exists a unique $y \in M$ such that $\rho(x, M) = ||x - y||$.

20P305

- 13. Explain Hilbert space with an example. And prove that any two separable infinite dimensional Hilbert spaces are isometrically equivalent.
- 14. State and prove Bessel's inequality. Also prove that for any x ∈ H and any orthonormal system{e_i}[∞]₁, there exists a y ∈ H such that y = ∑[∞]_{i=1}⟨x, e_i⟩e_i.

UNIT III

- 15. Let $L \hookrightarrow X$ be a subspace of a normed space X and $x \in X$ such that dist(x, L) = d > 0, then prove that there exists $f \in X^*$ such that ||f|| = 1, f(L) = 0 and f(x) = d.
- 16. Let X be normed space and Y be a complete normed space. Then prove that $L(X \mapsto Y)$ is a Banach space.
- 17. Prove that $A : X \mapsto Y$ is compact implies $A^* : Y^* \mapsto X^*$ is compact.

$(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Prove that $l_p \ 1 \le p \le \infty$ is a complete normed space.
- 19. State and prove Hölder's inequality and Minkowski's inequality for the scalar sequences.
- 20. (a) State and prove Riesz representation theorem.
 - (b) For a normed space X and x_1, x_2 be two elements in X such that $x_1 \neq x_2$, prove that there exists $f \in X^*$ satisfying $f(x_1) \neq f(x_2)$.
- 21. (a) Prove that *M* is relatively compact if and only if for every $\epsilon > 0$ there exists a finite ϵ –net in *M*.
 - (b) Prove that $M = \{x(t) \in C[a, b]: |x(t)| < C_1 \text{ and } |x'(t)| < C_2\}$ is relatively compact, where C_1, C_2 are positive constants.

 $(2 \times 5 = 10 \text{ Weightage})$
