(Pages: 2)

Name	•••
Reg. No	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021

(CUCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MST2 C07 - ESTIMATION THEORY

(Statistics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Define completeness. Give an example of a family of distributions which is not complete.
- 2. Let X be a random variable with p.d.f.

$$f(x) = \begin{cases} \frac{1}{2}; \theta < x < \theta + 2\\ 0; otherwise \end{cases}$$

where θ is any real number? Examine whether there is any statistic sufficient for θ .

- Define Fisher information. Let x₁, x₂, x_n be i.i.d. radom variables which follows Poisson distribution with parameter λ. Find Fisher information.
- 4. Define CAN estimator. Show that \overline{X} is CAN for θ in Poisson (θ)
- 5. Define ancillary statistics. Discuss its role in estimation.
- 6. Describe the pivotal quantity method of constructing shortest confidence interval.
- 7. Find Cramer -Rao lower bound for any unbiased estimator of θ based on *n* i.i.d observations from the population with p. d. f.

$$f(x) = \frac{1}{\pi(1+(x-\theta)^2)}, -\infty < x < \infty, -\infty < \theta < \infty$$

$(4 \times 2 = 8 \text{ Weightage})$

Part B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Let X₁, X₂, ..., X_n be i. i. d. observations from Poisson P(λ). Find a consistent estimator of $e^{-\lambda}$.
- 9. Let $X_1, X_2, ..., X_n$ be i. i. d. observations from $U(\theta, \theta + 1)$, Show that $(X_{(1)}, X_{(n)})$ is minimal sufficient for θ , but not complete.
- 10. Prove or disprove the statement Maximum Likelihood Estimators need not be unique.
- 11. State and prove Lehmann Scheffe theorem.

20P259

- 12. Define UMVUE. Are they unique? Justify your answer.
- 13. State and prove sufficient condition for consistency of an estimator.
- 14. Define one parameter exponential family of distributions. Give an example of a distribution which is not a member of this family.

$(4 \times 3 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 15. State Basu's theorem. Applying Basu's theorem show that sample mean and sample variance are independently distributed if the sample is drawn from a normal population with mean μ and variance σ^2 .
- 16. Based on a sample drawn from $N(\mu, \sigma^2)$, with σ^2 unknown, construct a $100(1-\alpha)\%$ confidence interval for μ .
- 17. State and prove asymptotic properties of maximum likelihood estimators.
- 18. (a) State and prove Rao-Blackwell theorem.
 - (b) Let X_1, X_2, \dots, X_n be a random sample sequence from N(0, 1). Find UMVUE of θ and θ^2

 $(2 \times 5 = 10 \text{ Weightage})$
