(Pages: 2)

Name:	••••	••••	• • • • •	
Reg. No:				

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021

(CUCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C06 - ALGEBRA II

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum:30 Weightage

Part A (Short Answer Questions)

Answer *all* questions. Each question carries 1 weightage.

- 1. If \mathcal{R} is a commutative ring with unity and $\mathcal{R}/_{\mathcal{M}}$ is a field, show that \mathcal{M} is a maximal ideal of \mathcal{R} .
- If φ_α: F[x] → E be the evaluation homomorphism such that φ_α(a) = a for a ∈ F and φ_α(x) = α. Then show that φ_α is a transcendental over F if and only if it is a one to one map.
- 3. Find the degree and basis for $Q(\sqrt[3]{2}, \sqrt{3})$ over Q.
- 4. Find the number of primitive 8th roots of unity in **GF(9)**.
- 5. Show that the complex zeros of polynomials with real coefficients occur in conjugate pairs.
- 6. What are the automorphisms of $Q(\sqrt{2},\sqrt{3})$ leaving Q fixed?
- 7. Find the cyclotomic polynomial $\varphi_5(x)$ over Q.
- 8. Show that regular 20-gon is constructible.

(8 x 1 = Weightage)

Part B

Answer any *six* questions. Each question carries 2 weightage.

Unit 1

- 9. Show that $\mathcal{F}[x]$ is a principal ideal domain where \mathcal{F} is a field. Is $\mathcal{Q}[x]/\langle x^2 5x + 6 \rangle$ a field. Give reason.
- 10. If E be the simple extension $\mathcal{F}(\alpha)$ of a field \mathcal{F} and α be algebraic over \mathcal{F} , then show That $\beta \in E$ can be uniquely expressed as

$$\beta = \mathfrak{b}_0 + \mathfrak{b}_1 \alpha + \mathfrak{b}_2 \alpha^2 + \cdots \dots \dots + \mathfrak{b}_{n-1} \alpha^{n-1}, b_i \in \mathcal{F}$$

where degree $irr(\alpha, \mathcal{F}) = n \ge 1$. Also show that there exists an irreducible polynomial of degree 3 in $\mathbb{Z}_3[x]$.

20P201

11. Prove that $Q(\sqrt{3} + \sqrt{7}) = Q(\sqrt{3}, \sqrt{7})$

Unit 2

- 12. Show that any two fields of same positive prime power order are isomorphic. Also show that if \mathcal{F} is any field, there is an irreducible polynomial in $\mathcal{F}[x]$ of degree n.
- 13. State and prove Frobenius automorphism. Also prove $\mathcal{F}_{\{p\}}$ is isomorphic to \mathbb{Z}_p .
- 14. Show that $\mathcal{G}(\mathcal{Q}(\sqrt{2},\sqrt{3})/\mathcal{Q})$ has order 4.

Unit 3

- 15. What is the group of the polynomial $x^3 1 \in Q[x]$ over Q.
- 16. Find $\phi_3(x)$ and $\phi_8(x)$ over Z_2 and Z_3 respectively.
- 17. Can the splitting field of $x^{17} 5$ over Q has a solvable Galois group? Give reason.

(6 x 2 = 12 Weightage)

Part C

Answer any *two* questions from the following four questions. Each question carries 5 weightage.

- 18. State and prove Kronecker's Theorem. Also show that $\Re[x]/\langle x^2 + 1 \rangle$ is isomorphic to the set C of complex numbers.
- 19. State and prove isomorphism extension theorem.
- 20. Prove that a field E where $\mathcal{F} \leq E \leq \overline{\mathcal{F}}$ is a splitting field over \mathcal{F} iff every automorphism of $\overline{\mathcal{F}}$ leaving \mathcal{F} fixed maps E onto itself and thus induces an automorphism of E leaving \mathcal{F} fixed.
- 21. State the main theorem of Galois Theory and also prove that for $\mathcal{H} \leq \mathcal{G}(\mathcal{H}/\mathcal{F})$, $\lambda(\mathcal{H}) = \mathcal{H}$.

(2 x 5 = 10 Weightage)
