(Pages: 2)

Name: Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 (CBCSS-PG)

CC19P MST4 C14 - MULTIVARIATE ANALYSIS

(Statistics - Core Course)

(2019 Admission - Regular)

Time: Three Hours

Maximum:30 Weightage

PART A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Define the singular multivariate normal distribution.
- 2. Show that $X \sim N_p(\mu, \Sigma)$ if and only if $T'X \sim N_1(T'\mu, T'\Sigma T)$ where T is any real vector.
- 3. Distinguish between partial and multiple correlation.
- 4. Describe sphericity test.
- 5. Define Wishart distribution.
- 6. Define canonical variates and canonical correlation.
- 7. Explain the classification problem with a suitable example.

 $(4 \times 2 = 8 \text{ Weightage})$

PART B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Derive the null distribution of the sample correlation coefficient.
- 9. Show that \overline{X} and S are independently distributed when sampling from a multivariate normal population.
- 10. Let $X = \begin{pmatrix} X^{(1)} \\ X^{(2)} \end{pmatrix}$ be a p-variate multivariate Normal random vector. Obtain the necessary and sufficient condition for the independence of $X^{(1)}$ and $X^{(2)}$.
- 11. Let $X \sim N_p(0, \Sigma)$, then write the necessary and sufficient condition for the independence of the quadratic forms X'AX and X'BX where A and B are real symmetric matrices.
- 12. Derive likelihood ratio test for testing $H_0: \mu_1 = \mu_2 (= \mu_0)$ in $N_p(\mu_1, \Sigma)$ and $N_p(\mu_2, \Sigma)$ distributions, where Σ is unknown.
- 13. Formulate the classification problem as a special case of a statistical decision problem.
- 14. Distinguish between principal components and factor analysis.

$(4 \times 3 = 12 \text{ Weightage})$

19P452

PART C

Answer any *two* questions. Each question carries 5 weightage.

- 15. Obtain the MLE of μ and Σ when sampling from Multivariate Normal population with parameters μ and Σ .
- 16. State and prove the Cochran's theorem for the independence of quadratic forms and mention its applications.
- 17. Derive the distribution of Hotelling's T^2 statistic and explain its properties.
- 18. Evaluate the principal components in $X' = (x_1, x_2, x_3)$ with the covariance

matrix
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$
.

 $(2 \times 5 = 10 \text{ Weightage})$
