(Pages: 2)

Name:	• • • • •
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 (CBCSS - PG)

CC19P MTH4 C15 - ADVANCED FUNCTIONAL ANALYSIS

(Mathematics - Core Course) (2019 Admission - Regular)

Time: Three Hours

Maximum: 30 Weightage

Part A (Short Answer questions)

Answer *all* questions. Each question has 1 weightage.

- 1. Explain the residual spectrum with an example.
- 2. Define a symmetric operator and prove that AB is symmetric if A and B are symmetric operators with AB = BA.
- 3. If *P* is a projection and $Im P \perp \ker P$, then prove that $P = P^*$.
- 4. Prove that $-I||A|| \le A \le I||A||$ for any self-adjoint operator A.
- 5. State Hilbert theorem on the spectral decomposition of self-adjoint bounded operators.
- 6. Define perfectly convex set. Prove that K x is perfectly convex if and only if K is perfectly convex.
- 7. If *A* is a linear operator on a Hilbert space *H* with $DomA = H, A = A^*$, then prove that *A* is continuous.
- 8. A linear operator A admits a closure if and only if $Ax_n \rightarrow y$ and $x_n \rightarrow 0$ imply y = 0.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. For a compact operator T and $\lambda \neq 0$, prove that $\Delta_{\lambda} = \overline{\Delta_{\lambda}}$.
- 10. Prove that $\langle Ax, x \rangle \in \mathbb{R}$ for any $x \in H$ if and only if A is symmetric.
- 11. State and prove Minimax principle.

UNIT II

- 12. If $A_0 \le A_1 \le \dots \le A_n \le \dots \le A$, prove that there exists a strong limit of $(A_n)_n$.
- 13. If $T: E \to E$ is any linear operator, $Im P + \ker P = E$, where *P* is the projection onto Im P parallel to ker *P*. Then prove that PT = TP if and only if Im P and ker *P* are invariant subspaces of *T*.

19P402

14. If $Q_n(t)$ and $P_n(t)$ are sequences of polynomials such that $Q_n(t) \searrow \psi(t) \in K$, $P_n(t) \searrow \varphi(t) \in K \forall t \in [m, M] \text{ and } \psi(t) \le \varphi(t) \forall t \in [m, M]$, prove that $\lim_{n \to \infty} Q_n(A) =: B_1 \le B_2 := \lim_{n \to \infty} P_n(A)$

UNIT III

- 15. Prove that every complete metric space *M* is a set of second category.
- 16. State and prove Polya's theorem.
- 17. If μ is perfectly convex on a Banach space X such that $\mu(\lambda x) = \lambda \mu(x)$ for $\lambda \ge 0$, prove that there exists C > 0 such that $\mu(x) \le C ||x||$ for any $x \in X$.

(6 x 2 = 12 Weightage)

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. State and Prove the first Hilbert-Schmidt theorem.
- 19. Let *A* be such that $m \cdot I \le A \le M \cdot I$ for some $m, M \in \mathbb{R}$. If *P* is a polynomial such that $P(z) \ge 0, \forall z \in [m, M]$, prove that $P(z) \ge 0$.
- 20. Prove that every basis of a Banach space is a Schauder basis.
- 21. Prove that there exists an equivalent norm |x| on \mathcal{A} such that $|x \cdot y| \le |x| \cdot |y|$ and |e| = 1.

(2 x 5 = 10 Weightage)
