(Pages: 2)

Name: Reg. No.:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021 (CBCSS - PG)

CC19P MTH4 E05 - ADVANCED COMPLEX ANALYSIS

(Mathematics - Elective Course)

(2019 Admission - Regular)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer *all* questions. Each question carries 1 Weightage.

- 1. When a set $\mathcal{F} \subseteq C(G, \Omega)$ is said to be equicontinuous over a set $E \subseteq G$?
- 2. Let d be the metric in \mathbb{C}_{∞} . Prove that $d\left(\frac{1}{z},\infty\right) = d(z,0)$
- 3. Let $|z| < \frac{1}{2}$. Show that $\frac{1}{2}|z| \le \log(1+z) \le \frac{3}{2}|z|$
- 4. Define the gamma function. Prove that $\Gamma(z+1) = z\Gamma(z)$ for $z \neq 0, -1, -2, ...$

5. If
$$Re(z) > 1$$
, prove that $\zeta(z)\Gamma(z) = \sum_{n=1}^{\infty} \left(\int_0^{\infty} e^{-nt} t^{z-1} dt \right)$

- 6. State Weierstrass factorization theorem.
- 7. When an entire function is said to have a finite rank?
- 8. Define *genus* of an entire function.

 $(8 \times 1 = 8$ Weightage)

Part B

Answer any *two* questions from each unit. Each question carries 2 Weightage.

UNIT I

- 9. State and prove Hurwitz's theorem.
- 10. Let $\{f_n\}$ be a sequence in M(G) and suppose $f_n \to f$ in $C(G, \mathbb{C}_{\infty})$. Prove that either f is meromorphic or $f \equiv \infty$. Also prove that if each f_n is analytic then either f is analytic or $f \equiv \infty$.
- 11. Let $Re(z_n) > -1$. Prove that the series $\sum \log(1 + z_n)$ converges absolutely iff the series $\sum z_n$ converges absolutely.

UNIT II

- 12. Show that $\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 \frac{z^2}{n^2}\right)$ for all $z \in \mathbb{C}$
- 13. If Re(z) > 1, prove that $n^{-z}\Gamma(z) = \int_0^\infty e^{-nt} t^{z-1} dt$
- 14. State and prove Runge's theorem.

19P403

Unit III

- 15. State and prove Mittag-Leffler theorem.
- 16. State and prove Schwarz reflection principle.
- 17. Let f be an analytic function on a region containing $\overline{B}(0;r)$ and suppose that $a_1, a_2, ..., a_n$ are the zeros of f in B(0;r) repeated according to multiplicity. If $f(0) \neq 0$, prove that

$$\log |f(0)| = -\sum_{k=1}^{\infty} \log \left(\frac{r}{|a_k|}\right) + \frac{1}{2\pi} \int_0^{2\pi} \log |f(re^{i\theta})| d\theta$$

 $(6 \times 2 = 12$ Weightage)

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Suppose G is open in \mathbb{C} . Prove that there is a sequence $\{K_n\}$ of compact subsets of G such that $G = \bigcup_{n=1}^{\infty} K_n$ satisfying
 - (a) $K_n \subseteq int K_{n+1}$
 - (b) $K \subseteq G$ and K compact implies $K \subseteq K_n$ for some n.
 - (c) Every component of $\mathbb{C}_{\infty} K_n$ contains a component of $\mathbb{C}_{\infty} G$
- 19. State and prove Arzela-Ascoli theorem.
- 20. Prove that $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ if Re(z) > 0.
- 21. Let f be an entire function of genus μ . Prove that for each positive number α there is a number r_0 such that for $|z| > r_0$

 $|f(z)| < \exp\left(\alpha |z|^{\mu+1}\right)$

 $(2 \times 5 = 10 \text{ Weightage})$
