(Pages: 2)

Name:
Reg. No

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2021

(CBCSS - PG)

CC19P MTH4 E09 - DIFFERENTIAL GEOMETRY

(Mathematics - Elective Course)

(2019 Admission - Regular)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Sketch the cylinder over the graph of $f(x) = \sin x$
- 3. Find the spherical image of the sphere $x_1^2 + x_2^2 + \dots + x_n^2 = 1$ oriented by $(p) = \frac{\nabla f(p)}{\|\nabla f(p)\|}$
- 4. Find the velocity, acceleration and speed of the parametrized curve $\alpha(t) = (\cos t, \sin t, 2 \cos t, 2 \sin t).$
- 5. Show that $\alpha: I \to S$ is geodesic if and only if the covariant acceleration $(\dot{\alpha})'$ is zero along α
- 6. Find the length of the parametrized curve $\alpha: [-1,1] \to \mathbb{R}^3$ by $\alpha(t) = (\cos 3t, \sin 3t, 4t)$
- 7. Compute $\int_{\alpha} x_2 dx_1 x_1 dx_2$ where $\alpha(t) = (2 \cos t, 2 \sin t), 0 \le t \le 2\pi$
- 8. Find the Gaussian curvature of the sphere $x_1^2 + x_2^2 + x_3^2 = 1$

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions form each unit. Each question carries 2 weightage.

Unit-I

- 9. Let U be an open set in Rⁿ⁺¹ and f: U → R be smooth. Let p ∈ U be a regular point of f, and let c = f(p). Then prove that the set of all vectors tangent to f⁻¹(c) at p is equal to [∇f(p)][⊥]
- 10. Let $a, b, c \in \mathbb{R}$ be such that $ac b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = x_1^2 + x_2^2$ on the ellipse $ax_1^2 + 2bx_1x_2 + cx_2^2 = 1$ are of the form $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$ where λ_1 and λ_2 are the eigenvalues of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$
- 11. Let $S \subset \mathbb{R}^{n+1}$ be a connected n surface in \mathbb{R}^{n+1} . Then prove that there exist on S exactly two smooth unit normal fields N_1 and N_2 , and $N_2(p) = -N_1(p)$ for all $p \in S$.

Unit-II

12. Let *S* denote the cylinder $x_1^2 + x_2^2 = r^2$ of radius r > 0 in \mathbb{R}^3 . Show that α is geodesic of *S* if and only if α is of the form $\alpha(t) = (r \cos(at + b), r \sin(at + b), ct + d)$ for some $a, b, c, d \in \mathbb{R}$

19P404

- 13. Let S be an n surface in \mathbb{R}^{n+1} , let $p, q, \in S$ and let α be a piecewise smooth parametrized curve from p to q. Then prove that the parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot products.
- 14. Prove that the Weingarten map L_p on an n-sphere is a scalar multiplication by a constant.

Unit-III

- 15. Let V be a finite dimensional real vector space with dot product and $L: V \to V$ be a self adjoint linear operator. Prove that \exists an orthonormal basis for V consisting of eigen vectors of L.
- 16. Prove that on each compact oriented n surface S in \mathbb{R}^{n+1} there exist a point p such that the second fundamental form at p is definite.
- 17. Let *S* be an *n* surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. Prove that *f* is smooth if and only if $f \circ \varphi: U \to \mathbb{R}^k$ is smooth for each local parametrization $\varphi: U \to S$.

 $(6 \times 2 = 12$ Weightage)

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. a) Let *X* be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Then prove that there exists an open interval *I* containg 0 and an integral curve $\alpha: I \to U$ of *X* such that
 - (*i*) $\alpha(0) = p$
 - (*ii*) If $\beta: \tilde{I} \to U$ is any other integral curve of X with $\beta(0) = p$, then $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ for all $t \in \tilde{I}$
 - b) Find the integral curve through p = (1,1) of the vector field X on \mathbb{R}^2 given by X(p) = (p, X(p)) Where $X((x_1, x_2)) = (x_2, -x_1)$.
- 19. Let S be a compact connected oriented n surface in Rⁿ⁺¹ exhibited as a level set f⁻¹(c) of a smooth function f: Rⁿ⁺¹ → R with ∇f(p) ≠ 0 for all p ∈ S. Then prove that the Gauss map maps S onto the unit sphere Sⁿ.
- 20. Let *C* be an oriented plane curve. Then prove that there exists a global parametrization of *C* if and only if *C* is connected.
- 21. State and prove inverse function theorem for n-surfaces. Hence deduce that if S is a compact, connected oriented n-surface in \mathbb{R}^{n+1} whose Gauss-Kronecker curvature is nowhere zero, then the Gauss map is a diffeomorphism.

 $(2 \times 5 = 10 \text{ Weightage})$