(Pages: 2)

Name:	
Reg. No	

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2022 (CBCSS-UG)

CC19U MTS6 B12 - CALCULUS OF MULTI VARIABLE

(Mathematics - Core Course)

(2019 Admission - Regular)

Time: 2 ¹/₂ Hours

Maximum: 80 Marks Credit: 4

Section A

Answer *all* questions. Each question carries 2 marks.

- 1. What is a function of two variables? Give an example of one by stating its rule, domain and range.
- 2. Find $\lim_{(x,y)\to(1,2)} \frac{2x^2 3y^3 + 4}{3 xy}$.

3. Let
$$f(x, y) = x^2 + 2y^2$$
. Find $f_x(2,1)$ and $f_y(2,1)$.

- 4. Find the differential of the function $z = 3x^2y^3 + 5xy$
- 5. Let $w = 2x^2y$, where $x = u^2 + v^2$ and $y = u^2 v^2$. Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$.
- 6. Find the gradient of f(x, y) = 2x + 3xy 3y + 4 at the point P(2,1).
- 7. Find the critical points of $f(x, y) = x^2 + y^2 4x 6y + 17$.
- 8. Find directional derivative of $f(x, y) = 4 2x^2 y^2$ at the point (1,1) in the direction of the unit vector **u** that makes an angle of $\frac{\pi}{3}$ with the positive x axis.
- 9. Find the limits of integration to evaluate $\iint_R 1 2xy^2 dA$ where

 $R = \{(x, y) | 0 \le x \le 2, -1 \le y \le 1\}$

- 10. Explain why it is sometime advantageous to reverse the order of integration of an iterated integral
- 11. Find the equation of the cone $z = \sqrt{x^2 + y^2}$ in spherical coordinates.
- 12. Find Jacobian of the transformation from x-y plane to u-v plane given by u = x y and v = 2x + y.
- 13. State Divergence Theorem.
- 14. State Greens Theorem.
- 15. State Stokes Theorem.

(Ceiling: 25 Marks)

Section **B**

Answer all questions. Each question carries 5 marks.

- 16. Sketch a contour map for the surface described by $f(x, y) = x^2 + y^2$ using the level curves corresponding to k = 0, 1, 4, 9 & 16.
- 17. Let $f(x, y, z) = xe^{yz}$. Compute f_{xzy} and f_{yxz} .

19U603

- 18. Find equations of the tangent plane and normal line to the ellipsoid with equation $4x^2 + y^2 + 4z^2 = 16$ at the point $(1, 2, \sqrt{2})$.
- 19. Let w = f(x, y) where *f* has continuous second order partial derivatives. Let $x = r^2 + s^2$ and y = 2rs. Find $\frac{\partial^2 w}{\partial r^2}$.
- 20. Find the area of the part of the surface with equation $z = 2x + y^2$ that lies directly above the triangular region R in the plane with vertices (0, 0), (1, 1) and (0, 1).
- 21. Evaluate $\iiint_T \sqrt{x^2 + z^2} \, dV$, where T is the region bounded by the cylinder $x^2 + z^2 = 1$ and the planes y + z = 2 and y = 0.
- 22. Evaluate $\int_C 2x \, ds$ where C is union of the arc C_1 of the parabola $y = x^2$ from (0,0) to (1,1) followed by the line segment C_2 from (1,1) to (0,0).
- 23. Evaluate $\int_C \mathbf{F} d\mathbf{r}$, where $\mathbf{F}(x, y, z) = \cos z \,\hat{\mathbf{i}} + x^2 \hat{\mathbf{j}} + 2y \hat{\mathbf{k}}$ and C is the curve of intersection of the plane x + z = 2 and the cylinder $x^2 + y^2 = 1$

(Ceiling: 35 Marks)

Section C

Answer any *two* questions. Each question carries 10 marks.

24. (a) Show that $w = 5\cos(3x + 3ct) + e^{x+ct}$ where c is a constant statisfies the wave equation $\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}$.

(b) If
$$\sin z = \frac{x+y}{\sqrt{x}+\sqrt{y}}$$
, Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. Also show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{1}{2}\tan z$

- 25. Find the dimension of the open rectangular box of maximum volume that can be constructed from a rectangular piece of cardboard box having an area of 485 ft^2 . What is the volume of the box?
- 26. Let T be the solid that is bounded by the parabolic cylinder $y = x^2$ and the plane z = 0and y + z = 1. Find the center of mass of T, given that it has uniform density $\rho(x, y, z) = 1$.
- 27. Let **T** be a region bounded by the parabolic cylinder $z = 1 y^2$ and the planes z = 0, x = 0 and x + z = 2 and let S be the surface of T.

If
$$F(x, y, z) = xy^2 \hat{\imath} + \left(\frac{1}{3}y^3 - \cos xz\right)\hat{\jmath} + xe^y \hat{k}$$
, find $\iint_S F.n \, dS$.
(2 × 10 = 20 Marks)
