(Pages: 2)

Name:	••••	• • • • • •	• • • • • •	•••••
Reg. No: .				

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C10 - OPERATIONS RESEARCH

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 wieghtage.

- 1. Prove that the set of feasible solutions forms a convex set.
- 2. What are the two applications of OR?
- 3. What is the difference between a balanced and unbalanced transportation problem?
- 4. Define loop in transportation array.
- 5. Prove that the dual of dual is primal.
- 6. What is meant by sensitivity analysis?
- 7. Define mathematical expectation of the game.
- 8. Define the concept of notion of dominance.

$(8 \times 1 = 8 \text{ Weightage})$

PART B

Two questions should be answered from each unit. Each question carries 2 weightage.

UNIT I

Let f(X) be defined in a convex domain K ⊆ E_n and be differentiable. Then f(X) is convex if and only if f(X₂) - f(X₁) ≥ (X₂ - X₁)'∇f(X₁) for all X₁, X₂ in K.

10. Show that the vertex of S_F is a basic feasible solution.

11. What is meant by Simplex multipliers?

UNIT II

12. Show that min $f(X) \ge \max \phi(Y)$.

13. Solve the transportation problem.

	<i>D</i> ₁	<i>D</i> ₂	<i>D</i> ₃	D_4	
01	1	2	-2	3	70
02	2	4	0	1	38
03	1	2	-2	5	32
	40	28	30	42	

21P205

14. What is meant by Carterer problem?

UNIT III

15.	Find th	e min	imum	spanni	ng tree	e in the	followi	ng und	irected	graph		
	Arc	(1,2)	(1,3)	(1,4)	(2,3)	(2,8)	(2,10)	(3,4)	(3,8)	(4,5)	(4,6)	
	Length	7	4	8	3	9	14	4	10	15	12	
	Arc	(4,8)	(5,6)	(5,7)	(6,7)	(6,8)	(6,9)	(7,9)	(8,9)	(8,10) (9,10))
	Length	10	4	1	2	20	16	18	3	4	6	
16	In sen	sitivit	v anal	vsis	how c	an we	detern	nine th	ne new	, onti	mal solu	tic

- 16. In sensitivity analysis how can we determine the new optimal solution after introduction of new variables?
- 17. State and prove the Minimax theorem.

 $(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any two questions. Each question carries 5 weightage.

18. Solve the following problem by simplex method. Also solve it by solving its dual graphically

Maximize $y_1 + y_2 + y_3$

Subject to $2y_1 + y_2 + 2y_3 \le 2$,

$$2y_1 + y_2 + 2y_3 \le 2,$$
$$y_j \ge 0$$

for j = 1, 2, 3

- 19. Show that the maximum flow in a graph is equal to the minimum of the capacities of all possible cuts in it.
- 20. Solve the problem using branch and bound method.

Minimize $9x_1 + 10x_2$ Subject to $0 \le x_1 \le 10$, $0 \le x_2 \le 8$, $3x_1 + 5x_2 \ge 45$; x_2 is integer

21. Use notion of dominance to simplify the following payoff matrices and then solve the

game

0	5	-4
3	9	-6
3	-1	2

 $(2 \times 5 = 10 \text{ Weightage})$