21P254

(Pages: 2)

Name:

Reg.No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P ST2 C07 - ESTIMATION THEORY

(Statistics)

(2019 Admission onwards)

Time : 3 HoursMaximum : 30 Weightage

Part-A

Answer any *four* questions. Each question carries 2 weightage.

- 1. if x1,x2,...xnx1,x2,...xn be i.i.d random samples from exponential with parameter $\theta\theta$. Show that $T(x)=\sum_{i=1}nx_iT(x)=\sum_{i=1}nx_i$ is sufficient for $\theta\theta$.
- 2. Explain Minimal Sufficient Statistic.In N(θ ,1)N(θ ,1),Show that x⁻x⁻ is a Minimal Sufficient statistic for $\theta\theta$
- 3. Define Fisher information. Let $x_{1,x_{2,...,x_n}}x_{1,x_{2,...,x_n}}x_{1,x_{2,...,x_n}}$ be i.i.d. random variables which follows Poisson distribution with parameter $\lambda\lambda$. Find Fisher information.
- 4. Find moment estimator of $\theta\theta$ in U(0, θ)U(0, θ).
- 5. Let $X \sim N(\mu, \sigma_2) X \sim N(\mu, \sigma_2)$. Find MLE for $\mu\mu$ and $\sigma_2 \sigma_2$.
- 6. Give an example which is the member of one parameter cramer family of distribution.
- 7. Explain shortest length confidence inetrval.

$(4 \times 2 = 8 \text{ Weightage})$

Part-B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Let x1,x2,...,xnx1,x2,...,xn be random sample from i.i.d. $N(\mu,\sigma_2)N(\mu,\sigma_2)$. Show that $T_1(x)=\sum_{i=1}n_{xi},T_2(x)=\sum_{i=1}n_{xi},$
- 9. Let $X \sim N(0,\sigma_2) X \sim N(0,\sigma_2)$ Find MVBE of $\sigma_2 \sigma_2$
- 10. Find Cramer-Rao lower bound for variance of the unbiased estimator of $\theta\theta$ with $f(x;\theta)=\theta(1-\theta),x=0,1,2,...,and0<\theta<1f(x;\theta)=\theta(1-\theta),x=0,1,2,...,and0<\theta<1$
- 11. Let x1,x2,...,xnx1,x2,...,xnbe i.i.d observations from $P(\lambda)P(\lambda)$. Find a consistent estimator of $e -\lambda e \lambda$.
- 12. Let x1,x2,...,xnx1,x2,...,xn be a random sample of size 'n' from $N(\mu,\sigma_2)N(\mu,\sigma_2)$.if Tn=x⁻Tn=x⁻, show that TnTn is a CAN estimator.

- 13. Let $X \sim B(n,p) X \sim B(n,p)$ and let $\pi(P)\pi(P)$ be the prior density having Beta distribution with pamerter m,km,k. find the bayes estimator of pp. If random variable xx assumes i.i.d.
- 14. Find the $100(1-\alpha)\%100(1-\alpha)\%$ shortest length confidence interval for $\theta\theta$ when $X \sim N(\theta, 1)X \sim N(\theta, 1)$

 $(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any *two* questions. Each question carries 5 weightage.

- 15. a) Define i) UMVUE i) MVUEb) State and prove Lehman-Scheffe theorem
- 16. i)State and prove invariance property of consistent estimator ii)Find a consistent estimator $e_{\lambda}e_{\lambda}$ of if $x \sim P(\lambda)x \sim P(\lambda)$.
- 17. Give an example to prove that a family which is not a exponential family but is a cramer family.
- 18. Based on a sample drawn from $N(\mu,\sigma_2)N(\mu,\sigma_2)$ with $\sigma_2\sigma_2$ is known, construct a $100(1-\alpha)\%100(1-\alpha)\%$ C.I for $\mu\mu$.

 $(2 \times 5 = 10 \text{ Weightage})$
