(Pages: 2)

Name:

Reg. No.:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E05 - ADVANCED COMPLEX ANALYSIS

(Mathematics - Elective Course)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer **all** questions. Each question carries 1 weightage.

- 1. When a set $\mathcal{F} \subseteq C(G, \Omega)$ is said to be normal?
- 2. What do you meant by $\mathcal{F} \subseteq H(G)$ is locally bounded?

3. Let d be the metric in \mathbb{C}_{∞} . Prove that $d\left(\frac{1}{z_1}, \frac{1}{z_2}\right) = d(z_1, z_2)$.

- 4. Show that the residue of the gamma function Γ at simple pole -n is given by $Res(\Gamma, -n) = \frac{(-1)^n}{n!}$
- 5. Define Riemann zeta function.
- 6. Prove that $\frac{1}{e^z 1}$ has a pole of order one at z = 0.
- 7. Define analytic continuation along a path.
- 8. What do you meant by a finite genus entire function?

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Prove that $C(G, \Omega)$ is a complete metric space.
- 10. State and prove Montel's theorem.
- 11. Let $Re(z_n) > 0, \forall n \in \mathbb{N}$. Prove that $\prod_{n=1}^{\infty} z_n$ converges to a nonzero number iff the series $\sum_{n=1}^{\infty} \log z_n$ converges.

UNIT II

12. Prove that $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ if Re(z) > 0.

13. If Re(z) > 1, prove that $\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 - P_n^{-z}}\right)$ where $\{P_n\}$ is the sequence of prime numbers.

14. State and prove Runge's theorem.

20P403

Unit III

- 15. State and prove Mittag-Leffler theorem.
- 16. Suppose that G is a region, $G^* = \{z : \overline{z} \in G\}$, $G_+ = \{z \in G : Im(z) > 0\}$ and $G_0 = \{z \in G : Im(z) = 0\}$ such that $G = G^*$. If $f : G_+ \cup G_0 \to \mathbb{C}$ is a continuous function which is analytic on G_+ and if f(x) is real for $x \in G_0$. Prove that there is an analytic function $g : G \to \mathbb{C}$ such that g(z) = f(z) for all $z \in G_+ \cup G_0$
- 17. Derive the Jensen's formula.

$(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any **two** questions. Each question carries 5 weightage.

- 18. Suppose G is open in \mathbb{C} . Prove that there is a sequence $\{K_n\}$ of compact subsets of G such that $G = \bigcup_{n=1}^{\infty} K_n$ satisfying
 - (a) $K_n \subseteq int K_{n+1}$
 - (b) $K \subseteq G$ and K compact implies $K \subseteq K_n$ for some n.
 - (c) Every component of $\mathbb{C}_{\infty} K_n$ contains a component of $\mathbb{C}_{\infty} G$
- 19. Prove that a set $\mathcal{F} \subseteq C(G, \Omega)$ is normal iff the following two conditions are satisfied
 - (a) for each $z \in G$, $\{f(z) : f \in \mathcal{F}\}$ has compact closure in Ω .
 - (b) \mathcal{F} is equicontinuous at each point of G.
- 20. Show that $\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 \frac{z^2}{n^2}\right)$ for all $z \in \mathbb{C}$. Using factorizations of $\sin \pi z$ find factorizations of $\cos \pi z$, $\sinh \pi z$ and $\cosh \pi z$
- 21. State and prove monodromy theorem.

 $(2 \times 5 = 10 \text{ Weightage})$
