(Pages: 2)

Name:	• • • • • • •
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E09 - DIFFERENTIAL GEOMETRY

(Mathematics - Elective Course)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage.

- 1. Show that graph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set of some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$
- 2. Find and Sketch gradient field of $f(x_1, x_2) = x_1^2 + x_2^2$
- 3. Define spherical image of the oriented n-surface. Describe the spherical image of $x_2^2 = x_1$
- 4. Define Levi Civita parallelism. State any three properties
- 5. Show that normal component of acceleration is same for all parametrized curves in nsurface S in \mathbb{R}^{n+1} passing through a point *p* with velocity **v**
- 6. Find length of the parametrized curve $\alpha: I \to \mathbb{R}^2$ where , $\alpha(t) = (t^2, t^3), I = [0, 2]$
- Distinguish between first fundamental form and second fundamental form of an nsurface S
- 8. Let S be an n- surface which is the image of a parametrized n- surface $\varphi: U \to \mathbb{R}^{n+1}$ with $N^{\varphi}(p) = N^{S}(\varphi(p))$ for all $p \in U$. Show that $L_{p}^{\varphi} = L_{\varphi(p)}^{S}$

(8 × 1 = 8 Weightage)

PART B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Define Integral curve of a vector field. Find the integral curve through p = (1,1) of the vector field X(p) = -p
- 10. State and prove Lagrange multiplier theorem
- 11. Define oriented n- surface Show that a connected n- surface in \mathbb{R}^{n+1} has exactly two orientations. Give example of unorientable surface

20P404

UNIT II

- 12. Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then α is a geodesic. Check whether $\alpha(t) = (\cos 3t, \sin 3t)$ is a geodesic
- 13. Define Weingarten map. Prove that Weingarten map is self adjoint
- 14. Show that local parametrizations of the plane curve are unique upto reparametrization.

UNIT III

- 15. Let S be a compact connected oriented n- surface $in\mathbb{R}^{n+1}$ Then K(p) of S is nonzero for all $p \in S$ if and only if second fundamental form of S at p is definite for all $p \in S$
- 16. Define differential of a smooth map.

Let $\varphi: U \to \mathbb{R}^3$ be given by $\varphi(\theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ where $U = \{(\theta, \phi) \in \mathbb{R}^2: 0 < \phi < \pi\}, r > 0$ Show that $d\phi$ is non singular for each $p \in U$

17. State and prove inverse function theorem for n- surfaces

$(6 \times 2 = 12$ Weightage)

PART C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Show that Gauss map is onto.
- 19. Let S be an n- surface in \mathbb{R}^{n+1} , let $p \in S$ and let $\mathbf{v} \in S_p$ then there exist a maximal geodesic in S passing through p with initial velocity \mathbf{v}
- 20. Let C be an oriented plane curve. Then prove that there exist a global parametrization of C if and only if C is connected
- 21. (a) Let S be an oriented *n*-surface in \mathbb{R}^{n+1} and let $p \in S$. Let Z be non zero normal vector field on S. Derive Gauss Kronecker curvature formula for S at p
 - (b) Find Gaussian Curvature of n- sphere of unit radius at $(1,0,\ldots,0)$

 $(2 \times 5 = 10 \text{ Weightage})$
