(Pages: 2)

Name:	•••
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2022

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P PHY4 C12 - ATOMIC AND MOLECULAR SPECTROSCOPY

(Physics - Core Course)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Section A

Answer *all* questions. Each question carries 1 weightage.

- 1. What is Zeeman effect? Distinguish between normal and anomalous Zeeman effect.
- 2. Obtain an expression for rotational energy levels of a non-rigid diatomic molecule and schematically represent it.
- 3. What are hot bands? Why are they called so?
- 4. Explain Stimulated Raman Effect.
- 5. Explain mutual exclusion principle with examples.
- 6. Write a note on Déslandre's table.
- 7. What is meant by relaxation process? Explain spin- spin relaxation.
- 8. Discuss recoilless emission and absorption of gamma rays.

$(8 \times 1 = 8$ Weightage)

Section B

Answer any *two* questions. Each question carries 5 weightage.

- 9. Explains the theory of anomalous Zeeman effect. Illustrate with diagrams of the Zeeman splitting of Sodium Yellow D lines.
- 10. Explain how the structure of XY₂ type and XY₃ type is determined using Raman and Infra-Red spectroscopy.
- 11. Discuss in detail the rotational fine structure of electronic vibrational spectra. Obtain equations for $\overline{v_P}$, $\overline{v_Q}$ and $\overline{v_R}$.
- 12. Explain the principle of ESR technique. Discuss the working of ESR spectrometer with the help of a schematic diagram.

$(2 \times 5 = 10 \text{ Weightage})$

20P405

Section C

Answer any *four* questions. Each question carries 3 weightage.

- 13. Consider two electrons, one in the 4*p* and the other in the 4*d* sub shell. Obtain the *L*, *S* and *J* values and the spectroscopic symbols for this two electron system.
- 14. The lines in the pure rotational spectrum of HCl are spaced as 20.8×10^2 per metre. Calculate the moment of inertia and the internuclear distance. Mass of proton = $1.67 \times 10^{-27} kg$, Mass of Chlorine = $58.5 \times 10^{-27} kg$.
- 15. How many revolutions per second does a Carbon monoxide molecule make when J = 4? The rotational constant of CO molecule is 1.9313 cm⁻¹.
- 16. With the exciting line 2536A, a Raman line for a sample is observed at 2612A. Calculate the Raman shift in cm⁻¹.
- 17. For ¹H³⁵Cl, the rotational constant $B_0 = 10.44 \text{ cm}^{-1}$ and $B_1 = 10.13 \text{ cm}^{-1}$ for the V= 0 and 1 vibrational levels, respectively, and the separation of these vibrational levels, ω_0 is 2886.04 cm⁻¹. Calculate the wave numbers of the first two members of each of the O and S branches in Raman vibration-rotation spectrum.
- 18. The values of $\overline{v_e}$ and x_e for lower and upper states of CO are 2170.21 cm⁻¹, 0.0062 and 1515.61 cm⁻¹, 0.0114 respectively. The (0,0) transition is observed at 64746.55cm⁻¹. Calculate the energy difference of the two electronic states.
- 19. A proton magnetic resonance spectrometer operates at 300 MHz. Calculate the value of the magnetic field. $g_N = 5.585$ and $\mu_N = 5.05 \times 10^{-27} \text{JT}^{-1}$.

 $(4 \times 3 = 12 \text{ Weightage})$
