(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS3 B03 / CC20U MTS3 B03 - CALCULUS OF SINGLE VARIABLE - II

(Mathematics - Core Course)

(2019 Admission onwards)

Time : 2.5 Hours

Maximum : 80 Marks

Credit: 4

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

- 1. Find $\int \frac{\sqrt{\ln x}}{x} dx$.
- 2. Find the derivative of $f(x) = \log_2 |\tan x|$.
- 3. Evaluate $\int \sqrt{\sinh x} \cosh x dx$.
- 4. Evaluate $\lim_{x\to 0} \frac{e^x-1}{x^2+x}$.
- 5. State root test for series.
- 6. Determine whether the series $\sum_{n=1}^{\infty} 5\left(\frac{4}{3}\right)^{n-1} = 5 + \frac{20}{3} + \frac{80}{9} + \frac{320}{27} + \cdots$ converges or diverges.
- 7. Determine whether the series $\sum_{n=1}^{\infty} n^{-1.001}$ converges or diverges.
- 8. Define conditionally convergent series.
- 9. Find the radius of convergence and the interval of convergence of $\sum_{n=0}^{\infty} \frac{n!}{x^n}$.
- 10. Describe the curves represented by the parametric equations $x = 4\cos\theta$ and $y = 3\sin\theta$, with parameter interval $[0, 2\pi]$.
- 11. Sketch the region comprising points whose polar coordinates satisfy the condition $0 \le r \le 2$.
- 12. Sketch the cylinder $y = x^2 4$.
- 13. Find an equation in rectangular coordinates for the surface with spherical equation $\rho = 4cos\phi$.
- 14. Find the domain of the parameter t of the vector function $\overline{\gamma}(t) = \left\langle \frac{1}{t}, \sqrt{t-1}, \ln t \right\rangle$

15. If
$$x = \int_0^t \cos \frac{\pi u^2}{2} du$$
, $y = \int_o^t \sin \frac{\pi u^2}{2} du$ find $\frac{dy}{dx}$.

(Ceiling: 25 Marks)

Part B (Paragraph questions)

Answer *all* questions. Each question carries 5 marks.

- 16. Find the inverse of the function defined by $f(x) = \frac{1}{\sqrt{2x-3}}$.
- 17. Derive the formula for $\frac{d}{dx} \tan^{-1} x$.

- 18. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n n}{3n-1}$ converges or diverges.
- 19. Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n! n}$ absolutely convergent, conditionally convergent or divergent.
- 20. Find an equation of the tangent line to the curve $x = \theta \cos\theta$, $y = \theta \sin\theta$, at the point where $t = \frac{\pi}{2}$.
- 21. Find the length of the curve $r = 5sin\theta$, $0 \le \theta \le 2\pi$.
- 22. Find an equation of the plane containing the point (3, -3, 2) and having the normal vector $\mathbf{n} = \langle 4, 2, 3 \rangle$. Find the *x*-, *y*-, and *z*-intercepts, and make a sketch of the plane.
- 23. Find the parametric equations for the tangent line to the curve with parametric equations $x = \sqrt{t+2}, y = \frac{1}{t+1}, z = \frac{2}{t^2+4}$ at t = 2.

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any *two* questions. Each question carries 10 marks.

- 24. Use implicit differentiation to find $\frac{dy}{dx}$ for $xe^{2y} x^3 + 2y = 5$.
- 25. a) Determine whether the series ∑_{n=1}[∞] 1/n²+2 converges or diverges.
 b) Determine whether the series ∑_{n=1}[∞] 1/(3+2ⁿ) converges or diverges.
- 26. Find $\int e^{-x^2} dx$.
- 27. A shell is fired from a gun located on a hill 100m above a level terrain. The muzzle speed of the gun is 500m/sec, and it's angle of elevation is 30° .
 - a) Find the range of the shell.
 - b) What is the maximum height attained by shell?
 - c) What is the speed of the shell at impact?

(2 × 10 = 20 Marks)
