21U302

(Pages: 2)

Name:

Reg.No:

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2022

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS3 C03 / CC20U MTS3 C03 - MATHEMATICS - III

(Mathematics - Complementary Course)

(2019 Admission onwards)

Time : 2.00 Hours

Maximum : 60 Marks

Credit: 3

Part A (Short answer questions)

Answer all questions. Each question carries 2 marks.

1. If $\mathbf{r}(t) = \langle \ln t, 1 \rangle, t > 0$. Find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.

- ^{2.} Describe the level surfaces of the function $f(x, y, z) = \frac{x^2 + y^2}{z}$.
- 3. Find the level curve of $f(x, y) = \frac{x^2}{4} + \frac{y^2}{9}$ passing through the point (-2, -3)
- 4. If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, prove that $\nabla imes \vec{r} = 0$
- 5. Show that $\int_{(0,0)}^{(1,1)} y dx + x dy$ is path independent.
- 6. State Green's theorem in the plane.

7. Find Jacobian of the transformation $x = \frac{y}{x^2}$, $y = \frac{y^2}{x}$ from uv-plane to the xy-plane.

- 8. Express 1 + i in polar form.
- 9. Differentiate $f(z) = \frac{3z-4+8i}{2z+i}$
- 10. Express Ln(1+i) in the form a+ib.

11. Evaluate
$$\oint_C \left(z + \frac{1}{z - 4}\right) dz$$
, where *C* is the circle $|z| = 2$.
12. Evaluate $\int_C^i \pi z dz$

12. Evaluate $\int_{\frac{i}{2}}^{i} e^{\pi z} dz$

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer all questions. Each question carries 5 marks.

13. Find the curvature of the elliptical helix given by $\mathbf{r}(t) = a \cos t \mathbf{i} + b \sin t \mathbf{j} + ct \mathbf{k}$, where a, b, c > 0.

14. Evaluate
$$\oint_C (x^2 - y^2) ds$$
 where C is given by $x = 5 \cos t, y = 5 \sin t, 0 \le t \le 2\pi$.

- 15. Find the surface area of the portions of the sphere $x^2 + y^2 + z^2 = a^2$ that are within the cylinder $x^2 + y^2 = b^2$; 0 < b < a.
- 16. Convert the point $(\frac{1}{3}, \frac{5\pi}{3}, \frac{\pi}{6})$ given in spherical coordinates to rectangular coordinates and cylindrical coordinates.

^{17.} If
$$\mathbf{F} = xy\mathbf{i} + y^2z\mathbf{j} + z^3\mathbf{k}$$
, evaluate $\iint_S \mathbf{F} \cdot \mathbf{n} dS$ where S is the unit cube defined by $0 \le x \le 1, \quad 0 \le y \le 1, \quad 0 \le z \le 1.$

- 18. Verify that the function $u(x, y) = \log(x^2 + y^2)$ is harmonic. Also find v, the harmonic conjugate of u.
- 19. Using ML-inequality find an upper bound for the absolute value of $\oint_C \frac{e^z}{z^2 + 1} dz$, where C is the circle |z| = 5.

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any one question. The question carries 10 marks.

20. Find a vector that gives the direction in which the function $f(x, y) = \tan(x^2 + y^2)$ decreases most rapidly at the point $\left(\sqrt{\frac{\pi}{6}}, \sqrt{\frac{\pi}{6}}\right)$. Also find the minimum rate.

21. State Cauchy's integral formula. Using it evaluate $\oint_C \frac{z^2 + 3z + 2i}{z^2 + 3z - 4} dz$ where,

- a. C is the circle $|z+5| = \frac{3}{2}$
- b. C is the circle |z| = 2

 $(1 \times 10 = 10 \text{ Marks})$
