23P257		(Pa	ages: 3)	Name:		
	SECOND SE	CMESTER M.A. DEC (CBC		Reg. No: I ON, AP		
CC	19P ECO2 C08 – (QUANTITATIVE M				
		, , , , , , , , , , , , , , , , , , ,	onomics)			
Time:	3 Hours	(2019 Adil)	iission onwards)	Max		
	Part A Answer <i>all</i> questions. Each question carries 1/5 w					
1.		of all possible outcome	-			
1.	(a) One	(b) Zero	(c) Infinity	(c		
2.		f intersection of two d				
۷.	(a) Infinity	(b) Zero	(c) One	,s ((
3.	If X is a random variable and 'b' is a constant then $V (X + b)$ is:					
	(a) $V(X) + b$	(b) V (X)	(c) bV (X)	(0		
4.	If A is a constant			(-		
	(a) A	(b) 0	(c) 1	(0		
5.	If X and Y are random variables, then $E(X+Y) =$, provided all the					
	(a) E(XY)	(b) E(Y)	(c) $E(X)+E(Y)$	(0		
6.	Mean of binomial distribution is:					
	(a) Always more than its variance		(b) Always less	(b) Always less than its		
	(c) Always equal to its variance		(d) Always equa	(d) Always equal to stan		
7.	A family of parametric distributions in which mean is equal to varian					
	(a) Binomial distribution		(b) Uniform dis	(b) Uniform distribution		
	(c) Poisson distribution		(d) None of thes	(d) None of these		
8.	Normal distribution was discovered by:					
	(a) Laplace	(b) De-Moivre	(c) Gauss	(0		
9.	There are, generally speaking, two types of statistical inference. They					
	(a) sample estimation and population estimation					
	(b) Estimation theory and hypothesis testing					
	(c) interval estimation for a mean and interval estimation for a proportion					
	(d) independent s	ample estimation and	dependent sample est	imation		

(1)

2)	Nama				
3)	Name:				
	Reg. No: ON, APRIL 2024				
PG)	ON, AI KIL 2024				
ry/Improvement)					
IODS FOR ECC	DNOMIC ANALYSIS – II				
ics)					
n onwards)	Manimum 20 Waishtana				
	Maximum: 30 Weightage				
A					
tion carries 1/5 v	veightage.				
a random experin	nent is always equal to				
(c) Infinity	(d) None of these				
nt events is alway	'S				
(c) One	(d) None of the above				
nt then $V(X + b)$	is:				
(c) bV (X)	(d) None of these				
(c) 1	(d) 0.5				
Y) =, provided all the expectations exist:					
(c) $E(X)+E(Y)$	(d) None of these				
(b) Always less	than its variance				
(d) Always equa	ll to standard deviation				
h mean is equal t	o variance is				
(b) Uniform dist	ribution				
(d) None of thes	e				

(c) Gauss (d) All the above tatistical inference. They are: on

l estimation for a proportion

Turn Over

10. Chi square distribution curve is:

(a) Negatively skew	ved	(b) Symmetrical					
(c) Positively skewe	ed	(d) None of these	(d) None of these				
11. The concepts of consistency, efficiency and sufficiency are due to:							
(a) J. Neyman	(b) R. A. Fisher	(c) C.R. Rao	(d) J. Bernoulli				
12. Large sample tests are conventionally meant for a sample size							
(a) n = 20	(b) n < 30	(c) $n \ge 30$	(d) n = 100				
13. The critical region in hypothesis testing gives:							
(a) Region of accep	tance	(b) Region of rejection					
(c) Sample space		(d) The experiment	(d) The experimental region				
14. To test the significance of proportion, we use:							
(a) t-test	(b) F-test	(c) Normal test	(d) Chi-square test				
15. While performing Kruskal-Walis test, the ranks are asigned:							
(a) Independently to the observations for each treatment							
(b) For observations in each block independently							
(c) By pooling all the observations							
(d) None of the above							
			$(15 \times 1/5 = 3 \text{ Weightage})$				
Part B (Very Short Answer Questions)							
Answer any <i>five</i> questions. Each question carries 1 weightage.							
16. State classical definition of probability							
17. Define random variable with an example.							
18. Define discrete Uniform distribution.							
19. Define Normal distribution.							
20. Mention any two uses of F test.							
21. Define consistency of an estimator.							
	of an estimator.						
22. Give the test statist	of an estimator.	•	her the mean of a normal				

23. What is ANOVA?

 $(5 \times 1 = 5 \text{ Weightage})$

Part C (Short Answer Questions) Answer any seven questions. Each question carries 2 weightage.

24. State and prove the addition theorem of probability.

25. A random variable takes 1 and 2 with probs 1/3, 2/3. find E(X) and variance.

26. State and prove multiplication theorem of expectation 27. What is the importance of Lognormal distribution? 28. Explain (i) Standard Error (ii) Sampling Distribution 29. Explain how you would find interval estimates for the mean of a normal population. 30. Explain with example Simple and Composite hypothesis. 31. Explain the terms (i) Critical region (ii) Size of the test (ii) Type I and Type II errors. 32. Distinguish between parametric and non-parametric test. 33. Explain two way ANOVA technique.

Part D (Essay questions)

- 34. (i) State and prove Bayes theorem.
 - balls. One ball is transferred from urn I to urn II and then one is drawn from the latter. It happens to be white. What is the probability that the transferred ball was white?
- (ii) Two urns I and II contain respectively 3 white and 2 black bails, 2 white and 4 black 35. Describe the Binomial distribution. Derive its mean and variance.
- 36. Explain different methods of estimation.
- 37. Explain (i) Mann Whitney U test (ii) Kruskal Wallis test.

23P257

 $(7 \times 2 = 14 \text{ Weightage})$

Answer any two questions. Each question carries 4 weightage.

 $(2 \times 4 = 8$ Weightage)