23P254

(Pages: 2)

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - PG)

(Regular/Supplementary)

CC19P MST2 C07 / CC22P MST2 C07 - ESTIMATION THEORY

(Statistics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any *four* questions. Each question carries 2 weightage.

- 1. Define suffiency. State and prove factorization theorem for sufficiency.
- 2. Explain one parameter exponential family of distributions. Prove that geometric distribution distribution is a member of one parameter exponential family.
- 3. Define Fisher information. Find the Fisher Infromation of Caushy distribution.
- 4. Explain the method of percentiles for estimation of parameters.
- 5. If $f(x) = 1, \theta \frac{1}{2} \le x \le \theta + \theta + \frac{1}{2}$, obtain the M.L.E of θ .
- 6. Explain Loss function and different types of loss function.
- 7. Let $X \sim U(0, \theta)$. Obtain an unbiased C.I for θ .

 $(4 \times 2 = 8$ Weightage)

Part-B

Answer any *four* questions. Each question carries 3 weightage.

- 8. Explain Point estimation and Interval estimation. Also explain the desirable properties of a good estimator.
- 9. Define MVUE. Prove that MVUE is unique.
- 10. Define Cramer Rao Lower Bound. Find Cramer-Rao lower bound for variance of the unbiased estimator of θ with $f(x; \theta) = \theta(1 \theta), x = 0, 1, 2, ...,$ and $0 < \theta < 1$.
- ^{11.} Define Consistency. Let $x \sim P(\lambda)$. Check whether $T = \frac{2}{n(n+1)} \sum_{i=1}^{n} X_i$ is a consistent estimator of λ .
- 12. Let x_1, x_2, \ldots, x_n be a random sample of size 'n' from $N(\mu, \sigma^2)$ if $T_n = \bar{x}$, show that T_n is a CAN estimator.
- 13. Show that under squared loss function, the bayes estimator is the mean of posterior distribution.

14. Obtain the shortest considence inetrval for variance of a normal distribution based on 'n' observation, with confidence coefficient $(1 - \alpha)$.

$(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any *two* questions. Each question carries 5 weightage.

- i) State and prove Rao-Blackwell theorem
 ii) Let x₁, x₂,..., x_nbe a random sample from N(θ, 1). Find the UMVUE of θ and θ².
- i) State and prove sufficient condition for consistency of a estimator.
 ii) Find a consistent estimator e^{-λ} of if x ~ P(λ).
- 17. Explain Cramer family. State and prove Cramer-Huzurbazar theorem.
- 18. i) Define pivote.Describe the method of construction of confidence interval using pivot.
 - ii) Find the $100(1 \alpha)\%$ shortest length confidence inetrval for variance of normal distribution based on 'n' observation.

 $(2 \times 5 = 10 \text{ Weightage})$
