(Pages: 2)

Name:

Reg.No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MST2 C09 / CC22P MST2 C09 - TESTING OF STATISTICAL HYPOTHESES

(Statistics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part-A

Answer any *four* questions. Each question carries 2 weightage.

- 1. a) Define most powerful test
 - b) Let $\phi(x)$ be a most powerful test for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ Show that $\phi^*(x) = 1 - \phi(x)$ is a most powerful test for $H_0: \theta = \theta_1$ against $H_1: \theta = \theta_0$
- 2. Let p be the probability that a given die shows an even number. To test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{1}{3}$ the following procedure is adopted. Toss the die twice and accept H_0 if both dies shows an even number. Define power function. Find probability of type I error and power of test.
- 3. Explain:

i) uniformly most powerful unbiased test

ii) If a size α UMP test exists, then show that it is uniformly most powerful unbiased

- 4. Define a) α similar test b) Uniformly most powerful α similar test
- 5. Write a short note on sign test for median of a population has a specified value.
- 6. Explain Kolmogorov-Smirnov two sample test.
- 7. Let N be the number of items taken to a sample in an SPRT. Show that moment generating function of N exists

$(4 \times 2 = 8 \text{ Weightage})$

Part-B

Answer any *four* questions. Each question carries 3 weightage.

- 8. When will you say that a family of distributions possess MLR property ? Verify the family $C(1, \theta)$ possess MLR property.
- 9. Let X_1, X_2, \ldots, X_n be a sample taken from Bernoulli population $B(1, \theta)$. Using Karlin Rubin theorem derive the UMP test for testing $H_0: \theta \le \theta_0$ versus $H_0: \theta > \theta_0$ based upon the sample taken.

- 10. Define Complete statistic. Let X_1, X_2, \dots, X_n be a sample from a B(1, p) population Define $Y = \sum_{i=1}^n X_i$ Show that Y is a complete Statistic.
- 11. Explain chi-square test for homogeneity.
- 12. Define OC function of SPRT and derive its expression.
- 13. Determine the boundary points A and B of SPRT in terms of the strength of the test.
- 14. Let $X \sim P(\lambda)$, consider $H_0: \lambda = \lambda_0$ against $H_1: \lambda = \lambda_1(\lambda > 0)$. Derive SPRT and find OC function.

 $(4 \times 3 = 12 \text{ Weightage})$

Part-C

Answer any two questions. Each question carries 5 weightage.

- 15. Consider a sample X_1, X_2, \ldots, X_n taken from a population following $N(0, \sigma^2)$ for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 = \sigma_1^2(\sigma_1^2 \neq \sigma_0^2)$. Obtain the most powerful test using NP approach.
- 16. State and Prove Neyman Pearson Lemma for the most powerful test.
- 17. Write a note on:
 - (a) Mann-Whitney Wilcoxon test.
 - (b) Sign test for two sample
 - (c) Median test.
- 18. Develop SPRT for testing for testing $H_0: \mu = \mu_0$ agaist $H_1: \mu = \mu_1(\mu_1 > \mu_0)$ for observations taking from Normal distribution $N(\mu, \sigma^2)$, where σ^2 is known.

$(2 \times 5 = 10 \text{ Weightage})$
