23P201	(Pages: 2)	Name:
		Reg No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C06 - ALGEBRA - II

(Mathematics)

(2019 Admission onwards)

Time: 3 Hours Maximum: 30 Weightage

Part A

Answer any all questions. Each question carries 1 weightage.

- 1. Show that $\mathbb{Q}[x]/\langle x^2-2\rangle$ is a field.
- 2. Prove that $\mathbb{R}(i) \cong \mathbb{C}$
- 3. Show that a regular 9-gon is not constructible.
- 4. Prove that finite extension of a finite field is finite.
- 5. Prove that any two algebraic closures of a field F are isomorphic.
- 6. Find the splitting field of $\{x^2-2,x^2-3\}$ over $\mathbb Q$
- 7. State Primitive Element Theorem.
- 8. Prove that $\mathbb{Q}(\sqrt{2})$ is an extension of \mathbb{Q} by radicals.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. If E is finite extension field of a field F, and K is a finite extension field of E, then show that K is a finite extension of F and [K:F]=[K:E][E:F].
- 10. Find a basis and dimension of for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- 11. Let E be an extension field of F, then show that $\overline{F}_E = \{ \alpha \in E : \alpha \text{ is algebraic over } F \}$ is a subfield of E.

UNIT - II

- 12. A finite field $GF(p^n)$ of p^n elements exist for every prime power p^n .
- 13. If E is a finite extension of F, then $\{E:F\}$ divides [E:F].

14. If E is a finite extension of F, then prove that E is separable over F if and only if each α in E is separable over F.

UNIT - III

- 15. Let K be a finite normal extension of F, and let E be an extension of F, where $F \leq E \leq K \leq \overline{F}$. Then prove that
 - (a) K is a finite normal extension of E
 - (b) G(K/E) is precisely the subgroup of G(K/F) consisting of all those automorphisms that leave E fixed.
- 16. State Main Theorem of Galois Theory.
- 17. Find $\Phi_6(x)$ over \mathbb{Q} .

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any two questions. Each question carries 5 weightage.

- 18. Let R be a commutative ring with unity. M is an ideal in R. State and prove necessary and sufficient conditions for M becomes a maximal ideal.
- 19. State and Prove Kroneckers Theorem.
- 20. Let F be a finite field of characteristic p. Then show that the map $\sigma_p: F \to F$ defined by $\sigma_p(a) = a^p$ for $a \in F$, is an automorphism, the Frobenius automorphism in F. Also prove that $F_{\{\sigma_p\}} \simeq \mathbb{Z}_p$.
- 21. Let F be a field of characteristic 0 and let $a \in F$. If K is the splitting field of $x^n a$ over F, then show that G(K/F) is a solvable group.

 $(2 \times 5 = 10 \text{ Weightage})$
