(Pages: 2)

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - PG) (Regular/Supplementary/Improvement)

CC19P MTH2 C10 - OPERATIONS RESEARCH

(Mathematics)

(2019 Admission onwards)

Time: 3 Hours

Maximum : 30 Weightage

PART A

Answer all questions. Each question carries 1 weightage.

1. Define convex function.

- 2. Explain Degeneracy in linear programming problem.
- 3. Prove that dual of the dual is primal.
- 4. Explain simplex multipliers.
- 5. Explain Degeneracy in transportation problem.
- 6. Define the terms chain, circuit, cycle and path.
- 7. Explain integer programming.
- 8. Find the saddle point, if it exists, for the payoff matrix $\begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix}$

 $(8 \times 1 = 8 \text{ Weightage})$

PART B

Answer any *two* questions from each unit. Each question carries 2 weightage.

UNIT I

- 9. Let $X \in E_n$ and let f(X) = X'AX be a quadratic form. If f(X) is positive semidefinite, then prove that f(X) is a convex function.
- 10. Solve by simplex method Maximize $z = 7x_1 + 5x_2$ subject to $x_1 + 2x_2 \le 6$, $4x_1 + 3x_2 \le 12$, and $x_1 \ge 0, x_2 \ge 0$
- 11. Solve the LPP using Big M Method Minimize $2x_1 3x_2 + 6x_3$ subject to $3x_1 - 4x_2 - 6x_3 \le 2$, $2x_1 + x_2 + 2x_3 \ge 11$, $x_1 + 3x_2 - 2x_3 \le 5$, and $x_1, x_2, x_3 \ge 0$

UNIT II

12. Write the dual of the following LPP. Minimize $x_1 - 3x_2 - 2x_3$

subject to $2x_1 - 4x_2 \ge 12, 3x_1 - x_2 + 2x_3 \le 7,$ $-4x_1 + 3x_2 + 8x_2 = 10 \quad x_1 \quad x_2 \ge 0$

 $-4x_1 + 3x_2 + 8x_3 = 10, x_1, x_2 \ge 0, x_3 \text{ unrestricted}$

13. Solve by dual simplex method Minimize $z = x_1 + 3x_2 + 2x_3$ subject to $4x_1 - 5x_2 + 7x_3 \le 8$,

$$-2x_1 + 4x_2 - 2x_3 \le -2, \quad x_1 - 3x_2 + 2x_3 = 2, \quad x_1, x_2, x_3 \ge 0.$$

14. Find the optimum solution of the following transportation problem.

	D_1	D_2	D_3	D_4	
O_1	3	2	5	4	25
O_2	4	1	7	6	35
O_3	$\overline{7}$	8	3	5	30
	10	18	20	42	

UNIT III

15. Explain Cutting palne method.

16. Explain the algorithm of maximum flow problem.

17. Solve graphically the game whose payoff matrix is $\begin{bmatrix} 19 & 15 & 17 & 16 \\ 0 & 20 & 15 & 5 \end{bmatrix}$

 $(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any two questions. Each question carries 5 weightage.

18. Solve the following problem using two phase method. Maximize $Z = 4x_1 + 5x_2$

subject to $2x_1 + x_2 \le 6$, $x_1 + 2x_2 \le 5$, $x_1 + x_2 \ge 1$, $x_1 + 4x_2 \ge 2$ and $x_1 \ge 0$, $x_2 \ge 0$ 19. Find the minimum path from v_1 to v_8 in the graph with arcs and arc lengths given below:

(1,2) (1,3) (1,4) (2,3) (2,6) (2,5) (3,5) (3,4) (4,7)1 4 28 7 3 7 3 11 (6,4) (6,7) (6,8) (7,3) (7,8)(5, 6)(5, 8)(6,3)1 124 26 10 22

20. Solve by simplex method: Maximize Z = -5x₁ + 13x₂ + 5x₃ subject to 12x₁ + 10x₂ + 4x₃ ≤ 90, -x₁ + 3x₂ + x₃ ≤ 20, x₁ ≥ 0, x₂ ≥ 0. Use the sensitivity analysis find an optimal solution when right side of the second constraint is changed to 30.

21. State and prove fundamental theorem of rectangular games.

 $(2 \times 5 = 10 \text{ Weightage})$