(Pages: 2)

Name: Reg. No:

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MST4 C14 / CC22P MST4 C14 - MULTIVARIATE ANALYSIS

(Statistics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer any *four* questions. Each question carries 2 weightage

- 1. Define partial regression coefficient.
- 2. If $X \sim N_p(\mu, \sigma)$, find the characteristic function of X'AX.
- 3. Derive the distribution of sample mean vector from a multivariate normal distribution.
- 4. What do you mean by generalized variance?
- 5. Define Mahalanobis D^2 statistic. Also write down its relation with Hotelling's T^2 statistic.
- 6. Explain the problem of classification with an example.
- 7. Define orthogonal factor model.

$(4 \times 2 = 8 \text{ Weightage})$

Part B

Answer any *four* questions. Each question carries 3 weightage.

- 8. If $X \sim N_p(0,\sigma)$, show that a necessary and sufficient condition for the independence of X'AX and linear form $\alpha'X$ is that $A\Sigma\alpha = 0$.
- 9. If X has multivariate normal distribution, then show that every marginal distribution of X is also multivariate normal.
- 10. Derive the maximum likelihood estimators of mean vector and dispersion matrix of a multivariate normal distribution.
- 11. Write a short note on canonical correlation.
- 12. Define sphericity. Explain the sphericity test.
- 13. Explain the iterative procedure to calculate sample principal components.
- 14. Describe how to classify an observation into one of two known multivariate normal populations.

$(4 \times 3 = 12$ Weightage)

22P415

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 15. State and prove a necessary and sufficient condition for the independence of two quadratic forms.
- 16. Derive the distribution of the sample multiple correlation coefficient when the population multiple correlation coefficient is zero.
- 17. Explain how to test equality of several covariance matrices.
- 18. Describe classification into one of several multivariate normal populations.

 $(2 \times 5 = 10 \text{ Weightage})$
