22P403

(Pages: 2)

Name: Reg.No:

Maximum : 30 Weightage

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E05 - ADVANCED COMPLEX ANALYSIS

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Prove that $C(G, \Omega)$ is a metric space.
- 2. Let $\{f_n\}$ is a sequence in H(G) and $f \in (C(G, \mathbb{C}))$ such that $f_n \to f$. Prove that f is analytic.
- 3. If *d* is the metric of \mathbb{C}_{∞} , show that $d(z_1, z_2) = d\left(\frac{1}{z_1}, \frac{1}{z_2}\right)$ for $z_1, z_2 \in \mathbb{C}$.
- 4. When a region G_1 is said to be conformally equivalent to G_2 ? Show that Conformal equivalence is an equivalence.

5. Prove that the Euler constant of gamma function is given by $\gamma = \lim_{n \to \infty} \left[\left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \right) - \log n \right]$

6. Define Riemann zeta function $\zeta(z)$. If Re(z) > 1, then prove that $\zeta(z)\Gamma(z) = \sum_{n=1}^{\infty} \left(\int_{0}^{\infty} e^{-nt} t^{z-1} dt \right)$

- 7. Find the residue of $\frac{1}{e^z-1}$ at z=0
- 8. With suitable assumptions write Poisson-Jenson formula.

 $(8 \times 1 = 8$ Weightage)

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. When a set $\mathcal{F} \in H(G)$ is said to be locally bounded? Show that $\mathcal{F} \in H(G)$ is normal implies it is locally bounded.
- 10. Suppose $\mathcal{F} \subseteq (C(G, \Omega))$ is normal. Prove that for each $z \in G$, $\{f(z) : f \in \mathcal{F}\}$ has compact closure in Ω and \mathcal{F} is equicontinuous at each point of G.

11. Let $\{a_n\}$ be a sequence in \mathbb{C} such that $\lim |a_n| = \infty$ and $a_n \neq 0$ for all $n \ge 1$. Suppose that no complex number is repeated in the sequence an infinite number of times. Let $\{\rho_n\}$ is any sequence of integers such that $\sum_{n=1}^{\infty} \left(\frac{r}{|a_n|}\right)^{\rho_n+1} < \infty$ for all r > 0. Prove that $f(z) = \prod_{n=1}^{\infty} E_{\rho_n}(z/a_n)$ converges in $H(\mathbb{C})$. Also prove that the function f is an entire function with zeros only at the points a_n . Again if z_0 occurs in the sequence $\{a_n\}$ exactly m times, show that f has a zero at $z = z_0$ of multiplicity m.

UNIT - II

12. Show that $\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)$ for all $z \in \mathbb{C}$.

- 13. Let K be a compact subset of \mathbb{C} and let E be a subset of $\mathbb{C}_{\infty} K$ that meets each component of $\mathbb{C}_{\infty} K$. If f is analytic on an open set containing K and $\varepsilon > 0$. Prove that there is a rational function R(z) whose only poles lie in E and $|f(z) - R(z)| < \varepsilon$ for all z in K.
- ^{14.} Show that $\int_0^\infty \cos(t^2) dt = \frac{1}{2} \sqrt{\frac{1}{2}\pi}$

UNIT - III

- 15. Let G be a region and let $\{a_k\} \subseteq G$ be a sequence of distinct points such that $\{a_k\}$ has no limit points. For each $k \in \mathbb{N}$, let $S_k(z) = \sum_{j=1}^{m_k} \frac{A_{jk}}{(z-a_k)^j}$ where $m_k \in \mathbb{N}$, $A_{jk} \in \mathbb{C}$. Prove that there exist $f \in M(G)$ whose poles are exactly $\{a_k\}$.
- 16. Derive the Jensen's formula.
- 17. Let γ: [0,1] → C be a path and let {(f_t, D_t): 0 ≤ t ≤ 1} be an analytic continuation along γ. For 0 ≤ t ≤ 1, let R(t) be the radius of convergence of the power series expansion of f_t about z = γ(t). Prove that either R(t) = ∞ or R: [0,1] → (0,∞) is continuous.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

18. (a) Let $Re(z_n) > -1$. Prove that the series $\sum \log(1 + z_n)$ converges absolutely iff the series $\sum z_n$ converges absolutely.

(b) Let $Re(z_n) > 0$. Prove that the product $\prod_{n=1}^{\infty} z_n$ converges absolutely iff $\sum_{n=1}^{\infty} (z_n - 1)$ converges absolutely.

19. Let (X_n, d_n) are metric spaces for each *n*. Prove that the space $\left(\prod_{n=1}^{\infty} X_n, d\right)$ where

$$d = \sum_{n=1}^{\infty} \left[\left(\frac{1}{2}\right)^n \left(\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}\right) \right] \text{ is a metric space. Also if } \xi^k = \{x_n^k\}_{n=1}^{\infty} \text{ is in } X = \prod_{n=1}^{\infty} X_n \text{, then prove that } \xi^k \to \xi = \{x_n\} \text{ iff } x_n^k \to x_n \text{ for each n. If each } (x_n, d_n) \text{ is compact then } X \text{ is compact.}$$

20. Prove that (i)
$$\left(1 - \frac{t}{n}\right)^n \le e^{-t}$$
 for $t \ge 0$ and $n \ge t$. (ii) $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ for $Re(z) > 0$.

- 21. (a) Let f_1 and f_2 be entire functions of finite order λ_1, λ_2 . Show that $f = f_1 f_2$ has finite order $\lambda \leq max(\lambda_1, \lambda_2)$
 - (b) Prove that if f is an entire function of order λ then f' also has order λ .

 $(2 \times 5 = 10 \text{ Weightage})$
