(Pages: 2)

Name:	••••
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH4 E09 – DIFFERENTIAL GEOMETRY

(Mathematics)

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

PART A

Answer *all* questions. Each question carries 1 weightage

- 1. Show that graph of any function f: $\mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F : \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Find the divergence of the vector field $\mathbf{X}(\mathbf{P}) = (\mathbf{P}, -\mathbf{P})$ on \mathbf{R}^2 .
- 3. State Lagrange's Multiplier Theorem.
- 4. Prove that geodesics have constant speed.
- 5. Define covariant derivative of a smooth vector field along a parametrized curve.
- 6. Define Weingarten map $L_p: S_p \rightarrow S_q$
- 7. Let S be an n- surface in \mathbb{R}^{n+1} and let $p \in S$. Define the first and second fundamental forms of S at p.
- 8. State Inverse function theorem for a smooth map $\varphi: S \to \overline{S}$ where S and \overline{S} are n-surfaces.

$(8 \times 1 = 8 \text{ Weightage})$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

UNIT I

- Find an integral curve through p(1,1) of the vector field X on R² given by X(x₁,x₂) = (x₂, -x₁)
- 10. Let S be the unit circle $x_1^2 + x_2^2 = 1$. Define $g : \mathbb{R}^2 \rightarrow \mathbb{R}$ by $g(x_1, x_2) = a x_1^2 + 2bx_1 x_2 + c x_2^2$ where a, b, $c \in \mathbb{R}$. Find the extreme points and extreme values of g on S.
- 11. Let $S \subseteq \mathbb{R}^{n+1}$ be a connected n-surface. Then prove that there exist on S exactly two smooth unit normal vector fields.

UNIT II

12. Let S denote the unit sphere $x_1^2 + x_2^2 + x_3^2 = 1$ in R³. Show that $\alpha(t) = (\text{cosat, sinat, 0})$ for some $a \in R$ and $a \neq 0$ is a geodesic of S.

22P404

- 13. Prove that Wiengarten map L_p is self adjoint.
- 14. Find the global parametrization of the curve $(x_1-a)^2 + (x_2-b)^2 = r^2$ oriented by $\frac{\nabla f}{\|\nabla f\|}$.

UNIT III

- 15. Describe the relation between Gauss- Kronecker curvature and the principal curvatures of an n- surface
- 16. Show that on each compact oriented n- surface S there is a point $p \in S$ such that second fundamental form at p is definite.
- 17. Let S be an n-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. Prove that f is smooth if and only if fo φ is smooth for each local parametrization $\varphi: U \to S$.

$(6 \times 2 = 12 \text{ Weightage})$

PART C

Answer any *two* questions. Each question carries 5 weightage.

- Let S be a compact, connected oriented n- surface in Rⁿ⁺¹. Prove that the Gauss map maps S onto the unit sphere Sⁿ.
- 19. Let S be an n-surface in \mathbb{R}^{n+1} , let $p \in S$ and $v \in S_p$. Then prove the existence and uniqueness of the maximal geodesic in S passing through p with initial velocity v.
- 20. Let C be an oriented plane curve. Prove that there exist a global parametrization of C if and only if C is connected.

21. Find the Gaussian curvature of the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$

 $(2 \times 5 = 10 \text{ Weightage})$
