(Pages: 2)

Name Reg. No:

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(CUCBCSS-UG)

CC15U MAT2 C02 – MATHEMATICS

(Mathematics - Complementary Course)

(2015 to 2018 Admissions - Supplementary)

Time: Three Hours

Maximum: 80 Marks

PART A

Answer *all* questions. Each question has 1 mark.

- 1. Define a partition of [*a*, *b*].
- 2. Find the norm of the partition $P = \{0, 1.2, 1.5, 2.3, 2.6, 3\}$
- 3. $\frac{d}{dx}(\int_0^x \frac{1}{1+t^2} dt) = \dots$
- 4. Set up an integral for the area of the surface generated by revolving the curve $y = \tan x$, $0 \le x \le \frac{\pi}{4}$ about the *x* axis.
- 5. $\cosh 2x = \dots$
- 6. Show that $\operatorname{csch}^{-1} x = \sinh^{-1} \frac{1}{r}$
- 7. Find a formula for the n^{th} term of the sequence 0,1,1,2,2,3,3,4, ...
- 8. Find the sum of the series $\sum_{n=1}^{\infty} (-1)^n \frac{7}{4^n}$.
- 9. State the absolute convergence test.
- 10. Graph the set of points whose polar coordinates satisfy the conditions $\frac{2\pi}{3} \le \theta \le \frac{5\pi}{6}$
- 11. Identify the conic $r = \frac{6}{2+3\cos\theta}$.
- 12. Find the slope of the cardiod $r = 1 + \cos \theta$ at $\theta = 0$.

 $(12 \times 1 = 12 \text{ Marks})$

PART B

Answer any *seven* questions. Each question has 2 marks.

- 13. Without evaluating show that the value of $\int_0^1 \sqrt{1 + \cos x} \, dx$ is less than $\frac{3}{2}$
- 14. State mean value theorem for definite integrals.
- 15. Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \csc^2 \theta \cot \theta \, d\theta$.
- 16. Find the volume of the torus (doughnut) generated by revolving a circular disk of radius a about an axis in its plane at a distance $b \ge a$ from its center.
- 17. Show that $\cosh^2 x \sinh^2 x = 1$.
- 18. Show that the alternating harmonic series converges conditionally.

23U210S

- 19. Find the Taylor series generated by $f(x) = \frac{1}{x}$ at x = 2.
- 20. Find the equivalent Cartesian point corresponding to a point whose polar coordinate is given by $(5, \tan^{-1}\left(\frac{4}{2}\right))$.
- 21. Find the area of the region in the plane enclosed by the cardiod $r = a(1 + \cos \theta)$.

 $(7 \times 2 = 14 \text{ Marks})$

PART C

Answer any *six* questions. Each question has 5 marks.

- 22. Find the area of the region between the *x*-axis and the graph of $f(x) = x^3 x^2 2x$, $-1 \le x \le 2$.
- 23. A pyramid 3 m high has a square base that is 3 m on a side. The cross-section of the pyramid perpendicular to the altitude *x* m down from the vertex is a square *x* m on a side. Find the volume of the pyramid.

24. Find the length of the curve $x = \frac{y^4}{4} + \frac{1}{8y^2}$ from y = 1 to y = 2.

- 25. Evaluate $\int_{-\ln 2}^{0} \cosh^2\left(\frac{x}{2}\right) dx$.
- 26. Discuss the convergence of $\{a_n\}$ with $a_n = \frac{\ln n}{n^{1/n}}$.
- 27. Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}}$.
- 28. Find the points of intersection of the curves $r^2 = 4\cos\theta$ and $r = 1 \cos\theta$.
- 29. Find the area inside the smaller loop of the limacon $r = 2\cos\theta + 1$.

 $(6 \times 5 = 30 \text{ Marks})$

PART D

Answer any three questions. Each question has 8 marks.

- 30. (i) Find the mean value of $f(x) = \sqrt{4 x^2}$ on [-2,2].
 - (ii) Find the area of the region enclosed by the parabola $y = 2 x^2$ and the line x + y = 0.
- 31. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le y \le 2$, about the x-axis.
- 32. Discuss the convergence of the alternating series $\sum \frac{(-1)^n}{1+\sqrt{n}}$.
- 33. Find the radius of convergence and interval of convergence of the power series

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

34. Find the area of the surface generated by revolving the right hand loop of $r^2 = \cos 2\theta$ about the y-axis.

(3 × 8 = 24 Marks)