23U202

(Pages: 2)

Name:

Reg.No:

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS2 C02 / CC20U MTS2 C02 - MATHEMATICS - II

(Mathematics - Complementary Course)

(2019 Admission onwards)

Time: 2.00 Hours

Maximum : 60 Marks

Credit : 3

Part A (Short answer questions)

Answer *all* questions. Each question carries 2 marks.

- 1. Convert $\left(8, \frac{3\pi}{2}\right)$ from polar coordinates to Cartesian coordinates.
- 2. Show that $f(x) = \frac{1}{3}x^3 x$ is not invertible on any of the interval containing 1.
- 3. Replace the polar equation r = 1 by equivalent Cartesian equation. Then identify the graph.
- 4. Evaluate $\int \frac{\sinh x}{\cosh^4 x} dx$.
- 5. Express $\sinh^{-1}(5)$ in terms of natural logarithms.
- 6. Find $\lim_{n\to\infty}\left(\frac{n^2+1}{3n^2+n}\right)$.
- 7. Show that the series $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \dots$ diverges.
- 8. Sum the series $\sum_{i=1}^{\infty} \frac{2^{3i+4}}{3^{2i+5}}$.

9. Show that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ converges. Find its sum with an error of no more than 0.04.

10. Determine whether the set given by $\{f \in C(-\infty,\infty) : f(0) = 5\}$ is a subspace of $C(-\infty,\infty)$? Justify.

11.
If
$$A = \begin{bmatrix} 0 & 2 & 4 & 0 \\ 1 & 2 & -2 & 3 \\ 5 & 1 & 0 & -1 \\ 1 & 1 & 1 & 2 \end{bmatrix}$$
. Evaluate M_{41} .

12. Find the inverse of the matrix $\begin{pmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{pmatrix}$.

(Ceiling: 20 Marks)

Part B (Short essay questions - Paragraph)

Answer *all* questions. Each question carries 5 marks.

- 13. Find the length of the curve $f(x) = x^{3/2}$ on [0, 4].
- 14. Determine the convergence or divergence of $\int_2^\infty \frac{1}{x \ln x} dx$.
- ^{15.} Evaluate $\int_0^{\frac{\pi}{2}} \cos x \, dx$ using trapezoidal rule with n = 10. Compare the answer with the true value.
- 16. Let $B = \{w_1, w_2, w_3\}$ where $w_1 = \langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$, $w_2 = \langle \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \rangle$, $w_3 = \langle 0, \frac{1}{\sqrt{2}}, 1\frac{1}{\sqrt{3}} \rangle$. Show that B is an orthonormal basis. Express $u = \langle 3, -2, 9 \rangle$ in terms of B.

^{18.} Find the eigen values and the corresponding eigen vectors of the matrix $A = \begin{pmatrix} 5 & 1 \\ 1 & 5 \end{pmatrix}$. Then without finding A^{-1} find its eigen values and corresponding eigen vectors.

19. Compute
$$A^m$$
 if $A = \begin{pmatrix} 5 & -3 \\ -3 & 5 \end{pmatrix}$. Hence find A^4

(Ceiling: 30 Marks)

Part C (Essay questions)

Answer any *one* question. The question carries 10 marks.

- 20. Balance the chemical equation $Na + H_2O \rightarrow NaOH + H_2$.
- ^{21.} Diagonalize the matrix $\begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$.

 $(1 \times 10 = 10 \text{ Marks})$
