22U401

(Pages: 2)

Name:

Reg.No:

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS4 B04 / CC20U MTS4 B04 - LINEAR ALGEBRA

(Mathematics - Core Course)

(2019 Admission onwards)

Time: 2.5 Hours

Maximum : 80 Marks

Credit : 4

Part A (Short answer questions) Answer *all* questions. Each question carries 2 marks.

- 1. Find the parametric equations corresponding to the solution set of linear equation 3x 5y + 4z = 7
- 2. Give the inverse of the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
- 3. Prove that, elementary matrix is invertible and the inverse is also an elementary matrix.
- 4. Find A^{-1} , if $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

5. Find the Values of
$$\lambda$$
 for which $det(A) = 0$, when $A = \begin{bmatrix} \lambda - 1 & 0 \\ 2 & \lambda + 1 \end{bmatrix}$

- 6. Define Linearly independent set.
- 7. Find the coordinate vector of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ relative to the standard basis of $M_{2\times 2}$
- 8. Prove that, if W is a subspace of a finite dimensional vector space V, then W is finite dimensional.
- 9. Define transition matrix.
- 10. Define Row vectors.

11. If $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $w_1 = 2x_1 + x_2$ and $w_2 = 3x_1 + 4x_2$, check whether T(1,1)=T(1,0)+T(0,1)

- ^{12.} Find the equation of the image of the line y = 4x under the multiplication by matrix $A = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$
- 13. Define Eigen Value.
- 14. When we say 2 vectors are orthogonal in an inner product space?
- 15. When we say that the matrix B is orthogonally similar to A.

(Ceiling: 25 Marks)

Part B (Paragraph questions)

Answer *all* questions. Each question carries 5 marks.

- 16. Prove that a system of linear equations has zero, one or infinitely many solutions.
- 17. What conditions must b_1 , b_2 and b_3 satisfy in order for the system of equations $x_1 + x_2 + 2x_3 = b_1$; $x_1 + x_3 = b_2$; $2x_1 + x_2 + 3x_3 = b_3$ be consistent.
- 18. Let $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Find the standard matrix for the transformation and find

$$T(x), if T(e_1) = \begin{bmatrix} 2\\1\\3 \end{bmatrix}, \ T(e_2) = \begin{bmatrix} -3\\-1\\0 \end{bmatrix}, T(e_3) = \begin{bmatrix} 1\\0\\2 \end{bmatrix} \text{ and } X = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$$

- 19. Show that the solution of a homogeneous linear system Ax = 0 in *n* unknowns is a subspace of \mathbb{R}^n
- 20. Use matrix multiplication to find the reflection of (1, -3, 2) about xy- plane, xz plane and the yz plane.
- 21. Find a matrix *P* that diagonalize $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$
- 22. Show that $\langle f,g\rangle = \int_a^b f(x). g(x)$ is an inner product space on C[a,b]
- ^{23.} Let $S = \{v_1, v_2, v_3\}$ where $v_1 = (0, 1, 0), v_2 = (\frac{-4}{5}, 0, \frac{3}{5}), v_3 = (\frac{3}{5}, 0, \frac{4}{5})$ express u = (1, 1, 1) as a linear combination of vectors in S.

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any *two* questions. Each question carries 10 marks.

24. (a) Prove that $\begin{vmatrix} a_1 + b_1 t & a_2 + b_2 t & a_3 + b_3 t \\ a_1 t + b_1 & a_2 t + b_2 & a_3 t + b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = (1 - t^2) \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

b) If B is the matrix that results when a single row or single column of A is multiplied by a scalar k then prove that det(B) = k. det(A)

- 25. Show that the spaces R^2 and R^3 are vector spaces.
- 26. a) Prove that if A is an $m \times n$ matrix and if m > n, then the linear system Ax = b is inconsistent for at least one vector b in \mathbb{R}^n
 - b) Prove that if A is an $m \times n$ matrix and if m > n, then for each vector b in \mathbb{R}^n the linear system Ax = b is either inconsistent or has infinitely many solutions
- 27. Prove that the following are equivalent for an $n \times n$ matrix A.
 - (a) A is orthogonal
 - (b) The row vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.
 - (c) The Column vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.

 $(2 \times 10 = 20 \text{ Marks})$
