21U601

(Pages: 2)

Name:

Reg.No:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS6 B10 / CC20U MTS6 B10 - REAL ANALYSIS

(Mathematics - Core Course)

(2019 Admission onwards)

Time : 2.5 Hours

Maximum : 80 Marks

Credit : 5

Part A (Short answer questions) Answer *all* questions. Each question carries 2 marks.

- 1. Give an example to show that a continuous function does not necessarily have an absolute maximum even though it has an absolute minimum on a set.
- 2. Let f be continuous on the interval [0, 1] to R and such that f(0) = f(1). Prove that there exists a point c in I such that $f(c) = f(c + \frac{1}{2})$.
- 3. State preservation of interval theorem.
- 4. Prove that every Lipschitz function is uniformly continuous.
- 5. If $f(x) = x^2$ for $x \in [0, 5]$, calculate the Riemann sum of *f* corresponding to the partition P = (0, 1, 3, 5) and tags are selected as the right end points of the subintervals.
- 6. If $f \in \Re[a, b]$, then prove that the value of the integral is uniquely determined.
- 7. State substitution theorem and hence evaluate $\int_0^2 t^2 \sqrt{1+t^3} dt$.
- 8. Prove that the set of all rational numbers is a null set.
- 9. Find the limit of the sequence of functions (f_n) , where $f_n(x) = x^n$.
- 10. Define uniform norm. Find the uniform norm of the function f on [1, 3] where $f(x) = x^2$.
- 11. State Cauchy criterion for uniform convergence of sequence of functions.
- 12. Evaluate the improper integral $\int_{1}^{\infty} \frac{\ln x}{x^2} dx$.
- 13. Examine the convergence of $\int_{1}^{5} \frac{dx}{\sqrt{x^4 1}}$.

14. Prove that
$$\beta(m, n) = 2\int_{\overline{\theta}}^{\pi} \sin^{2m-1}\theta \cos^{2n-1}\theta \, d\theta$$
.

15. Express $\int_0^1 x^m (1-x^2)^n dx$ in terms of Beta function, where m > 1 and n > -1.

(Ceiling: 25 Marks)

Part B (Paragraph questions)

Answer *all* questions. Each question carries 5 marks.

- 16. Discuss the continuity of Thomae function.
- 17. Let *I* be a closed and bounded interval and let $f: I \to \mathbb{R}$ be continuous on *I*. If $\epsilon > 0$, then prove that there exists a continuous piecewise linear function $g_{\epsilon}: I \to \mathbb{R}$ such that $|f(x) g_{\epsilon}(x)| < \epsilon$ for all $x \in I$.
- 18. Let f and g are in $\Re[a, b]$ and $f(x) \le g(x)$, for all $x \in [a, b]$. Then prove that $\int_a^b f \le \int_a^b g$.
- 19. Prove that if $f:[a, b] \to \mathbb{R}$ is a continuous function, then $f \in \mathfrak{R}[a, b]$.
- 20. Let (f_n) be a sequence of continuous functions on $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly to a function $f: A \to \mathbb{R}$. Then prove that f is continuous on A.
- 21. State and prove Weierstras M-test. Hence show that the series $\cos x + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \frac{\cos 4x}{4^2} + \cdots$ converges uniformly.
- 22. Evaluate $\int_0^\infty e^{-x^2} dx$.
- 23. Prove the duplication formula: $\sqrt{\pi}\Gamma(2m) = 2^{2m-1}\Gamma(m)\Gamma(m+\frac{1}{2})$.

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any two questions. Each question carries 10 marks.

- 24. Let *f* be a continuous function on a closed and bounded interval *I*. Prove that (*i*) *f* is bounded on *I* (*ii*) *f* has an absolute maximum on *I*.
- 25. State and prove additivity theorem.
- 26. Check whether $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$ is conditionally convergent.
- 27. Show that even though the improper integral $\int_{-1}^{5} \frac{dx}{(x-1)^3}$ does not converge, its Cauchy principal value exists.

$(2 \times 10 = 20 \text{ Marks})$
