21U603

(Pages: 2)

Name:

Reg.No:

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2024

(CBCSS - UG)

(Regular/Supplementary/Improvement)

CC19U MTS6 B12 / CC20U MTS6 B12 - CALCULUS OF MULTI VARIABLE

(Mathematics - Core Course)

(2019 Admission onwards)

Time: 2.5 Hours

Maximum : 80 Marks

Credit : 4

Part A (Short answer questions) Answer *all* questions. Each question carries 2 marks.

- 1. Define level curves of a function of two variables.
- 2. Find the first partial derivatives of the function $f(x, y) = x\sqrt{y}$.
- 3. Find $\frac{dy}{dx}$ if $x^3 + xy + y^2 = 4$.
- 4. Suppose f is a differentiable at the point (x, y). Then prove that the maximum value of $D_u f(x, y)$ is $|\nabla f(x, y)|$, and this occurs when u has the same direction as $\nabla f(x, y)$.
- 5. Show that the point (0,0) is a critical point of $f(x,y) = y^2 x^2$.
- 6. Evaluate $\int_1^2 \int_0^1 3x^2 y dx dy$.
- 7. Evaluate $\int \int_r (1+2x+2y) dA$, where $R = \{(x,y): 0 \le y \le 1, y \le x \le 2y\}$.
- 8. Evaluate $\int \int_R x dA$ where *R* is the disk of radius 1 centered at the origin.
- 9. Evaluate $\int_0^{\frac{\pi}{2}} \int_0^3 \int_0^r r dz dr d\theta$
- 10. Derive the formula for changing double integral in rectangle coordinates to polar coordinates.
- 11. Find the gradient vector field of $f(x, y) = x^2 y y^3$.
- 12. Find the curl F(-1, 2, 1), if $F(x, y, z) = xy\hat{i} + xz\hat{j} + xyz^2\hat{k}$.
- 13. Find a parametric representation for the cone $x = \sqrt{y^2 + z^2}$.
- 14. State divergence theorem.
- 15. State Stockes' Theorem.

(Ceiling: 25 Marks)

Part B (Paragraph questions)

Answer all questions. Each question carries 5 marks.

- 16. Find the second-order partial derivatives of $f(x, y) = x^4 2x^2y^3 + y^4 3x$.
- 17. Let $z = 2x^2 xy$.

(i) Find the differential dz.

(ii)Compute the value of dz if (x, y) changes from (1,1) to (0.98,1.03).

- 18. Find equations of the tangent plane and normal line to the surface with equation $x^2 + 4y^2 + 9z^2 = 17$ at the point (2, 1, 1).
- 19. Find the surface area of the part of the paraboloid $z = 9 x^2 y^2$ that lies above the plane z = 5.
- 20. Evaluate $\int \int \int_T z dV$ where T is the solid in the first octant bounded by the graphs of $z = 1 x^2$ and y = x.
- 21. Let $F(x,y) = -\frac{1}{8}(x-y)\hat{i} \frac{1}{8}(x+y)\hat{j}$ represents a force field. Find the work done on a particle that moves along the quarter-circle of radius 1 centered at the origin in a clockwise direction from (0,1) to (1,0).
- 22. Using Green's theorem, evaluate $\oint_C (y^2 + \tan x) dx + (x^3 + 2xy + \sqrt{y}) dy$, where C is the circle $x^2 + y^2 = 4$ and is oriented in a positive direction.
- 23. Find the mass of the surface S composed of the part of the paraboloid $y = x^2 + z^2$ between the planes y = 1 and y = 4 if the density at a point P on S is inversely proportional to the distance between P and the axis of symmetry of S.

(Ceiling: 35 Marks)

Part C (Essay questions)

Answer any *two* questions. Each question carries 10 marks.

- 24. (i) Show that $lim_{(x,y)
 ightarrow (0,0)} rac{xy}{x^2+y^2}$ does not exist.
 - (ii) Using $\varepsilon \delta$ definition of limits, prove that $lim_{(x,y) \to (0,0)} \frac{2x^2y}{x^2 + y^2} = 0.$
- 25. Find the absolute extreme values of $f(x, y) = 2x^2 + y^2 2y + 1$ subject to the constraint $x^2 + y^2 \le 4$.
- 26. Find the center of mass of the region bounded by the graph $y = \sqrt{x}$, y = 0, x = 4, $\rho(x, y) = xy$.
- 27. Let $F(x, y, z) = yz^2 \hat{i} + xz^2 \hat{j} + 2xyz \hat{k}$.
 - (a) Show that F is conservative, and find a potential function f such that $F = \bigtriangledown f$.
 - (b) If F is a force field, find the work done by F in moving a particle along any path from (0, 0, 1) to (1, 3, 2).

$(2 \times 10 = 20 \text{ Marks})$