(FYUGP) CC24UMAT2MN103 - ANALYSIS AND SOME COUNTING PRINCIPLES (Mathematics - Minor Course) (2024 Admission - Regular) Maximum: 70 Marks Part A (Short answer questions) Answer all questions. Each question carries 3 marks. ^{1.} Check if the alternating series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ using the alternating series test. [Level:3] [CO2] Write the first five terms of the sequence $\{a_n\} = \frac{10n}{n+1}$. 2. [Level:2] [CO1] 3. Describe the Limit Comparison Test. [Level:1] [CO2] 4. Define the following terms: (i) Disk (ii) Neighbourhood [Level:1] [CO3] 5. What is the polar form of a complex number z = x + iy? [Level:1] [CO3] Solve the equation $\omega^2 = i$. 6. [Level:2] [CO3] 7. Define derivative of complex function at a point z_0 . [Level:1] [CO4] 8. Define entire function and give an example. [Level:1] [CO4] 9. Describe the sample space where a coin is tossed three times and the sequence of [Level:2] [CO5] heads and tails is recorded. 10. A group of 50 students is to be divided into 8 teams. What is the minimum number [Level:3] [CO5] of students that must be in one team, according to the pigeonhole principle? (Ceiling: 24 Marks) Part B (Paragraph questions/Problem) Answer *all* questions. Each question carries 6 marks. 11. Determine whether the following sequences are monotonic [Level:3] [CO1] (a) $\{a_n\} = \frac{n^2}{2^n - 1}$ (b) $\{a_n\} = 5 - \frac{1}{n}$.

12. Describe a p-Series and a harmonic series and explain its convergence. [Level:3] [CO2]

(Pages: 2)

Name

Reg. No :

SECOND SEMESTER UG DEGREE EXAMINATION, APRIL 2025

Time: 2.0 Hours

Credit: 4

13.	Describe the set of points z in (a) $ z - 1 = 1$		the complex plane that satisfy the given equations : (b) $ \mathbf{z} = Re(\mathbf{z})$			[Level:3]	[CO3]
14.	Evaluate the following (a) i^{11}	llowing power (b) i^{208}	rs of i . (c) i^{119}		(d) <i>i</i> ¹⁰⁰	[Level:2]	[CO3]
15.	• Show that the given functions are not analytic at any point: (a) $f(z) = Re(z)$ (b) $f(z) = y + ix$					[Level:2]	[CO4]
16.	Compute $\lim_{z_{-}}$	[Level:2]	[CO4]				
17.	 ⁷. (a) From a group of 15 people, how many ways can a team of 4 people be [Level:3] [CO5] selected if at least 2 of them must be women? (b) In how many ways can a 6-card hand be dealt from a deck of 52 cards? 						
18.	 3. (a) A password consists of 2 letters followed by 3 digits. The letters can be any of the 26 alphabetic characters, and the digits can be any of the 10 digits (0-9). How many different possible passwords can be formed? (b) Identify the number of distinguishable "words" that can be formed from the letters of MISSISSIPPI. 					[Level:3]	[CO5]
						(Ceiling: 36	Marks)
	Answer any one question. The question carries 10 marks.						
19.	· (a) Find the sequence of partial sums S_1, S_2, S_3, S_4, S_5 for the series $\sum_{i=1}^{\infty} \left(\frac{3}{2^n - 1}\right).$					[Level:3]	[CO2]
	(b) Using the nth-term test, deteremine whether the series converges or diverges. (i) $\sum_{n=0}^{\infty} 2^n$ (ii) $\sum_{n=0}^{\infty} \frac{1}{n}$						
20.	(a) Verify that t domain D.(b) Find the har	he function <i>u</i> monic conjug	(x,y) = xy -	+ 2	x + 2y is harmonic in an appropriate	[Level:2]	[CO4]

(c) Find an analytic function $f(\mathbf{z}) = u(x,y) + iv(x,y)$

(1 × 10 = 10 Marks)
