Name :

Reg. No :

SECOND SEMESTER UG DEGREE EXAMINATION, APRIL 2025

(FYUGP)

CC24UMAT2MN105 - VECTOR SPACES AND LINEAR TRANSFORMATIONS

(Mathematics - Minor Course)

(2024 Admission - Regular)

Time: 2.0 Hours Maximum: 70 Marks Credit: 4 **Part A** (Short answer questions) Answer *all* questions. Each question carries 3 marks. 1. Define span of a set of vectors. Give a spanning set for R^3 . [Level:2] [CO1] 2. Determine whether the statement is true or false. [Level:2] [CO1] a) The set of all polynomials of degree n is a subspace of $F(-\infty, \infty)$. b) The set of all polynomials of degree $\leq n$ is a subspace of $F(-\infty, \infty)$. 3. Show that the functions $f_1 = 3\sin^2 x$, $f_2 = 2\cos^2 x$ and $f_3 = 6$ form a linearly [Level:2] [CO2] dependent set in $F(-\infty, \infty)$. 4. What do you mean by a finite dimensional and infinite dimensional vector space? [Level:1] [CO2] Give an example for each. 5. Show that the standard unit vectors in \mathbb{R}^n are linearly independent. [Level:2] [CO2] 6. Write standard matrices for the projections onto the xy-plane, the yz-plane, and xz-[Level:1] [CO3] plane in R^3 . 7. Write standard matrices for the compression and expansion in R^2 . [Level:1] [CO3] 8. Find det(A) given that $p(\lambda) = \lambda^2 - 2\lambda - 3$ as its characteristic polynomial. [Level:3] [CO4] 9. Confirm by multiplication that x is an eigenvector of A, and find the corresponding [Level:2] [CO4] eigenvalue, where $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix} \text{ and } x = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$

10. Define Eigenspace of a matrix A.

[Level:1] [CO4] (Ceiling: 24 Marks)

(Pages: 2)

Part B (Paragraph questions/Problem)

Answer *all* questions. Each question carries 6 marks.

11. Show that lines through the origin and planes through the origin are subspaces of R^3 .	[Level:3] [CO1]
12. Show that \mathbb{R}^n is a vector space.	[Level:2] [CO1]
13. Explain why the vectors $v_1 = (2, 0, -1)$, $v_2 = (4, 0, 7)$ and $v_3 = (-1, 1, 4)$ form a basis for R^3 .	[Level:3] [CO2]
14. The vectors $v_1 = (1, 2, 1)$, $v_2 = (2, 9, 0)$ and $v_3 = (3, 3, 4)$ form a basis for R^3 . Find the coordinate vector of $v = (5, -1, 9)$ relative to the basis $S = \{v_1, v_2, v_3\}$.	[Level:3] [CO2]
15. Let $T_1 : R^2 \to R^2$ be the reflection on the y-axis and $T_2 : R^2 \to R^2$ be the reflection on the x-axis. Determine whether the operators T_1 and T_2 commute.	[Level:2] [CO3]
16. Find the standard matrix for the operator on R^2 that first reflects on the line $y = x$ and then shears by a factor 2 in the x direction. Sketch the image of unit square under this operator.	[Level:3] [CO3]
17. Find a matrix P that diagonalizes $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 1 \end{bmatrix}$	[Level:3] [CO4]
18. Confirm that P diagonalizes A, and then Compute A^{11} , where $A = \begin{bmatrix} -1 & 7 & -1 \\ 0 & 1 & 0 \\ 0 & 15 & -2 \end{bmatrix} \text{ and } P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 5 \end{bmatrix}$	[Level:3] [CO4]
	(Ceiling: 36 Marks)
Part C (Essay questions) Answer any <i>one</i> question. The question carries 10 marks.	
^{19.} Find a basis for and the dimension of the solution space of the homogeneous system. $x_1-4x_2+3x_3-x_4=0$ $2x_1-8x_2+6x_3-2x_4=0$	[Level:3] [CO2]
20. Show that the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by the equations.	[Level:3] [CO3]
$w_1 = 2x_1 + x_2 \ w_2 = 3x_1 + 4x_2$ is one-to-one , and find $T^{-1}(w_1,w_2).$	
	(1 × 10 = 10 Marks)
