24 U	207 (Pages: 2) Name :	
	Reg. No :	
	SECOND SEMESTER UG DEGREE EXAMINATION, APRIL 2	025
	(FYUGP)	
	CC24UPHY2CJ101 - ELECTRONICS - I	
	(Physics - Major Course)	
	(2024 Admission - Regular)	
Time:	2.0 Hours	Maximum: 70 Marks
		Credit: 4
	Part A (Short answer questions)	
	Answer <i>all</i> questions. Each question carries 3 marks.	
1.	Describe the behaviour of a PN junction under forward and reverse bias.	[Level:2] [CO2]
2.	Discuss the effect of temperature on the conductivity of a semiconductor.	[Level:2] [CO1]
3.	Discuss the advantages and disadvantages of full wave bridge rectifier.	[Level:2] [CO3]
4.	Explain the working of pi filter.	[Level:2] [CO3]
5.	Define transistor action and explain its significance.	[Level:1] [CO4]
6.	Explain the relationship between current gain, voltage gain and power gain in transistor amplifier.	[Level:2] [CO4]
7.	Define an analog signal and a digital signal.	[Level:1] [CO6]
8.	Define the term "Binary-Coded Decimal (BCD)."	[Level:1] [CO6]
9.	Convert the decimal number 25 into binary.	[Level:1] [CO6]
10.	Recall the binary equivalent of the decimal number 8.	[Level:1] [CO6]
		(Ceiling: 24 Marks)
	Part B (Paragraph questions/Problem)	
	Answer all questions. Each question carries 6 marks.	
11.	A silicon PN junction diode has a breakdown voltage of 75V and operates in a reverse-biased condition. Calculate the maximum current it can handle safely if its power dissipation is limited to 0.5W.	[Level:2] [CO2]
12.	An LED operates at a forward voltage of 2.2 V and a current of 20 mA. If the LED emits light with an efficiency of 60 percentage, calculate the total power consumed by the LED and the power converted into light.	[Level:2] [CO2]

13. Analyze the voltage stabilising action of zener diode by increasing input voltages.

[Level:4] [CO3]

14. Analyze the current flow paths in a half-wave voltage doubler circuit. [Level:4] [CO3] 15. Discuss the biasing with collector feedback circuit. [Level:2] [CO4] 16. Illustrate the concept of transistor stabilization with an example. [Level:2] [CO4] 17. Discuss and deduce the expression for collector-emitter voltage (VCE) in the [Level:2] [CO4] voltage divider bias method. 18. Write the hexadecimal form of 204. Then, explain how you would convert this [Level:1] [CO6] hexadecimal number back into decimal. (Ceiling: 36 Marks) Part C (Essay questions) Answer any *one* question. The question carries 10 marks. 19. Dissect the internal operation of a half-wave rectifier and obtain an expression for [Level:4] [CO3] efficiency 20. Explain the Common Emitter connection arrangement in transistor with suitable [Level:2] [CO4] diagram. Also discuss the important characteristics of CE arrangement. $(1 \times 10 = 10 \text{ Marks})$
