Name :

Reg. No :

SECOND SEMESTER UG DEGREE EXAMINATION, APRIL 2025

(FYUGP)

CC24UCHE2MN101 - QUANTUM MECHANICS, SOLID STATES AND GASEOUS STATES

(Chemistry - Minor Course)

(2024 Admission - Regular)

Time: 2.0 Hours

Maximum: 70 Marks

Credit: 4

Part A (Short answer questions)

Answer *all* questions. Each question carries 3 marks.

1.	State and explain Heisenberg's uncertainty principle.	[Level:2] [CO1]		
2.	Discuss about one important point of failure of classical physics.	[Level:2] [CO1]		
3.	Interpret the number of atoms per unit cell in body centered cubic lattice.	[Level:2] [CO2]		
4.	Explain in detail about nonstochiometric defects in crystals.	[Level:2] [CO2]		
5.	Explain the term average velocity. Give equation.	[Level:2] [CO3]		
6.	Explain Avagadro's law.	[Level:2] [CO3]		
7.	Calculate the total K.E in joules of the molecules in 22 g of CO2 at 27°C.	[Level:3] [CO3]		
8.	Give the equation for Critical pressure. Explain each term.	[Level:2] [CO4]		
9.	Describe the term Boyle temparature. How it related to compressiblity factor.	[Level:2] [CO4]		
10.	Describe the term compressibility factor. Give equation.	[Level:2] [CO4]		
		(Ceiling: 24 Marks)		
Part B (Paragraph questions/Problem)				
Answer <i>all</i> questions. Each question carries 6 marks.				
11.	Explain the defects of the Bohr atom model.	[Level:2] [CO1]		
12.	Discuss in detail about space lattice and unit cell and its paprameters	[Level:2] [CO2]		
13.	Describe the difference between paramagnetism and diamagnetism.	[Level:2] [CO2]		
14.	Discuss in details about p-type semiconductors.	[Level:2] [CO2]		
15.	Describe the terms collision diameter, collision frequency and mean free path of a gas. How does mean free path vary with pressure ?	[Level:2] [CO3]		
16.	Discuss in detail about collision diameter and collision number.	[Level:2] [CO3]		

(Pages: 2)

17. Discuss in detail about van der W	'aal's equation of state on the basis of deviation	[Level:2] [CO4]
from ideal behaviour.		
 Describe critical compressibility constants. 	factor. Explain how it relates to other critical	[Level:2] [CO4]
		(Ceiling: 36 Marks)
	Part C (Essay questions)	
Answer any	one question. The question carries 10 marks.	
19. Discuss in detail about Elements o	f symmetry in crystals.	[Level:2] [CO2]
20. Discuss the postulates of Kineti	c molecular model of gaes and derive RMS	[Level:2] [CO3]
velocity using kinetic gas equation		
		(1 × 10 = 10 Marks)
