(Pages: 3)

Name :....

Reg. No :....

Maximum: 30 Weightage

SECOND SEMESTER M.A. DEGREE EXAMINATION, APRIL 2025

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P ECO2 C08 - QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS - II

(Economics)

(2019 Admission onwards)

Time: 3 Hours

24P257

Part A

Answer *all* questions. Each question carries 1/5 weightage.

1.	The probability of all possible outcomes of a random experiment is always equal to					
	(a) One	(b) Zero	(c) Infinity	(d) None of these		
2.	The probability of the interscetion of two mutually exclussive events is always:					
	(a) Infinity	(b) Zero	(c) One	(d) None of these		
3.	If X is a r.v. having the pdf $f(x)$, then $E(X)$ is called					
	(a) Arithmetic mean	(b) Geometric mean	(c) Harmonic mean	(d) First quartile		
4.	If X and Y are independent random variables, then E(XY)= provided all the expectations exist:					
	(a) E(X)	(b) E(Y)	(c) $E(X)E(Y)$	(d) None of these		
5.	Binomial distribution was discovered by					
	(a) James Bernoulli		(b) Simeon Denis Poisson	l		
	(c) Laplace		(d) None of the above			
6.	If 'm' is a whole number,	mode of Poisson distrib	oution			
	(a) m-1 and m	(b) m and m+1	(c) m	(d) None of these		
7.	A normal distribution is:					
	(a) Symmetric	(b) Continuous	(c) Mesokurtic	(d) All the above		
8.	The degrees of freedom for student's t distribution based on a random sample of size n is:					
	(a) n	(b) n-1	(c) n-2	(d) None of these		
9.	As the sample size increases, the t distribution becomes more similar to the distribution					
	(a) Normal	(b) Chi-squre	(c) F	(d) Binomial		
10.	The chi-square and F distributions are used primarily to make inferences about population					
	(a) Means	(b) Variances	(c) Proportions	(d) None of these		

(1)

11.	The maximum likelihood estimators are necessarily:					
	(a) Unbiased	(b) Sufficient	(c) Most efficient	(d) Unique		
12.	The hypothesis under test is a:					
	(a) Simple hypothesis		(b) Alternative hypothesis			
	(c) Null hypothesis		(d) None of the above			
13.	Level of significance is the probability of:					
	(a) Type I error	(b) Type II error	(c) Not committing error	(d) None of the above		
14.	The statistic H under Kruskal-Walis test is approximately distributed as:					
	(a) Student's t	(b) Snedecor's F	(c) Chi-square	(d) normal deviate- Z		
15.	In ANOVA we test:					
	(a) The equality of several variances		(b) Significance of mean			
	(c) The equality of several means		(d) Significance of variance	ce		
				(15 × 1/5 = 3 Weightage)		

Part B (Very Short Answer Questions)

Answer any *five* questions. Each question carries 1 weightage.

- 16. Define variance of a random variable using expectation.
- 17. Define co variance of a random variable using expectation.
- 18. Mention the conditions under which Binomial tends to Poisson distribution.
- 19. Mention any two properties of Exponential distribution.
- 20. Distinguish between point estimation and interval estimation.
- 21. Define null and alternative hypothesis.
- 22. Mention the test statistic for testing the equality of variances of two normal populations when the samples are small.
- 23. Mention any two assumptions in non parametric tests.

$(5 \times 1 = 5 \text{ Weightage})$

Part C (Short Answer Questions)

Answer any seven questions. Each question carries 2 weightage.

- 24. Two unbiased dice are tossed. What is the probability that the sum of points scored on the two dice is 8?
- 25. The probability that A hits a target is 1/4 and the probability that B hits it is 2/5. What is the probability that the target will be hit if A and B each shoot at the target?
- 26. (i) State Baye's theorem. (ii) A box contains 3 blue and 2 red balls while another box contains 2 blue and 5 red balls. A ball drawn at random from one of the boxes turns out to be blue. What is the probability that it came from the first box?

- 27. Find the probability distribution of the number of heads when three coins are tossed together?
- 28. Explain (i) Standard Error (ii) Sampling Distribution
- 29. Mention any three properties of Chi-square distribution and two applications.
- 30. Explain the method of least squares.
- 31. Explain the terms (i) Significance level (ii) Power of the test (iii) Type I and Type II errors.
- 32. Disguish between parametric and non-parametric test.
- 33. What is ANOVA? What are the assumptions of it?

 $(7 \times 2 = 14 \text{ Weightage})$

Part D (Essay questions)

Answer any *two* questions. Each question carries 4 weightage.

- 34. (i) If the mean and variance of a binomial distribution are 4 and 2 respectively. Find the probability of (i) exactly two successes (ii) less than two successes (iii) More than two successes (iv) at least two successes
- 35. What is normal distribution? Discuss the useful ness and properties of normal distribution.
- 36. Explain any four properties of good estimators.
- 37. Explain ANOVA and two way ANOVA technique.

 $(2 \times 4 = 8 \text{ Weightage})$
