Name :

24P210

(Pages: 3)

Reg. No :

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS-PG)

(Regular/Supplementary/Improvement)

CC19P CHE2 C05 - GROUP THEORY AND CHEMICAL BONDING

(Chemistry)

(2019 Admission onwards)

Time: 3 Hours

Maximum: 30 Weightage

Section A

Answer any *eight* questions. Each question carries 1 weightage.

- 1. What is meant by the term inverse of a group element? What is the inverse of the element C_3 ?
- 2. What is meant by conjugate elements?
- 3. Derive the transformation matrix for improper axis of rotation.
- 4. Consider the BCl₃ molecule. What will be the reducible representation, if 3N cartesian coordinates are used as basis set?
- 5. Describe the nature of functions that are placed in the last two columns of the character tables of the point groups.
- 6. Using the reduction formula reduce, reducible following representations, Γ_a and Γ_b of C_{3v} point group into irreducible representation of the point group.

C _{3v}	Е	2C ₃	3σ
A ₁	1	1	1
A ₂	1	1	-1
E	2	-1	0
Γ _a	5	2	-1
$\Gamma_{\rm b}$	7	1	-1

- 7. Define projection operator. What is its significance?
- 8. Give the MO diagram of CO.
- 9. What is non-crossing rule?
- 10. Give the Huckel matrix for benzene molecule.
- 11. Phosphorus pentachloride, PCl₅ is a trigonal bipyramidal molecule. To what point group does it belong?
- 12. What are Coulomb integrals? Explain using H_2^+ as an example.

(8 × 1 = 8 Weightage) Turn Over

Section **B**

Answer any *four* questions. Each question carries 3 weightage.

- 13. List and depict all symmetry elements of (i) XeF₄ (ii) BF₃
- 14. Write matrices corresponding to all symmetry operations in C_{2v} point group and using mtrices prove that (i) $\sigma_{xz} \sigma_{yz} = C_2$ (ii) $\sigma_{xz} C_2 = \sigma_{yz}$.
- 15. Find the symmetries of vibrational modes of water molecule. Depict the transformation of these vibrational modes under each symmetry operation and assign symmetries to each vibrational mode (C_{2v} Table is given).
- Taking of trans N₂F₂ as an example, find the symmetries of normal modes and illustrate the rule of mutual exclusion (C_{2h} Table is given)..
- 17. State and explain Laporte selection rule using a suitable example.
- 18. Water belongs to C_{2v} point group. Find the symmetry species of MO's (C_{2v} Table is given).
- 19. What are the approximations introduced by Huckel to MO theory of conjugated molecules?

 $(4 \times 3 = 12 \text{ Weightage})$

Section C

Answer any two questions. Each question carries 5 weightage.

- 20. Sate Great Orthogonality Theorem. Using GOT derive the C₃V character table.
- 21. Using group theory determine the atomic orbitals of carbon atom involved in hybridization in CH_4 molecule. Using inverse transformation procedure determine the contribution of each atomic orbital toward hybrid orbitals.

						-u	0T-
T_d	E	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xz, yz, xy)

Table 1: Character table for T_d point group

- 22. Discuss the VB treatment of H_2 molecule.
- 23. Discuss the LCAO method for H_2^+ system.

 $(2 \times 5 = 10 \text{ Weightage})$

Character table for C_{2v} point group						
	E	C ₂ (z)	σ _v (xz)	σ _v (yz)	linear, rotations	quadratic
A ₁	1	1	1	1	z	x ² , y ² , z ²
A ₂	1	1	-1	-1	Rz	xy
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

Refer Character table for required questions:

Character table for C2v point group

Character table for C2h point group

C _{2h}	E	C ₂ (z)	i	σ _h		
Ag	1	1	1	1	Rz	x^{2}, y^{2}, z^{2}, xy
Bg	1	-1	1	-1	R _x or R _y	xz, yz
Au	1	1	-1	-1	Z	
Bu	1	-1	-1	1	x or y	
