24P201

(Pages: 2)

Name:

Reg.No:

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, APRIL 2025

(CBCSS - PG)

(Regular/Supplementary/Improvement)

CC19P MTH2 C06 - ALGEBRA - II

(Mathematics)

(2019 Admission onwards)

Time : 3 Hours

Maximum : 30 Weightage

Part A

Answer *all* questions. Each question carries 1 weightage.

- 1. Show that $\mathbb{Z}_5[x]/\langle x^3+3x+2\rangle$ is a field.
- 2. Prove that $\mathbb{R}(i) \cong \mathbb{C}$
- 3. Prove that doubling the cube is impossible.
- 4. Prove that finite extension of a finite field is finite.
- 5. Prove that any two algebraic closures of a field F are isomorphic.
- 6. Find the splitting field of $\{x^4 5x^2 + 6\}$.
- 7. Find $\Phi_5(x)$ over \mathbb{Q} .
- 8. Prove that $\mathbb{Q}(\sqrt{2})$ is an extension of \mathbb{Q} by radicals.

$(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any *two* questions each unit. Each question carries 2 weightage.

UNIT - I

- 9. If E is finite extension field of a field F, and K is a finite extension field of E, then prove that K is a finite extension of F and [K:F] = [K:E][E:F].
- 10. Find a basis and dimension of for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- 11. Let *E* be an extension field of *F*, then prove that $\overline{F}_E = \{\alpha \in E : \alpha \text{ is algebraic over } F\}$ is a subfield of *E*.

UNIT - II

- 12. A finite field $GF(p^n)$ of p^n elements exist for every prime power p^n .
- 13. Find the splitting field of $x^3 2$ over \mathbb{Q} .
- 14. If K is a finite extension of E and E is a finite extension of F, that is $E \le F \le K$, then K is separable over F if and only if K is separable over E and E is separable over F.

UNIT - III

- 15. Prove that a finite seperable extension of a field is a simple extension.
- 16. If K splitting field of $x^4 + 1$ over \mathbb{Q} , prove that $G(K/\mathbb{Q})$ is isomorphic to Klein 4-group.
- 17. Find $\Phi_8(x)$ over \mathbb{Z}_2 .

 $(6 \times 2 = 12 \text{ Weightage})$

Part C

Answer any *two* questions. Each question carries 5 weightage.

- 18. Let R be a commutative ring with unity. Then show that M is a maximal ideal of R if and only if R/M is a field.
- 19. State and Prove Kroneckers Theorem.
- 20. State and Prove The Conjugation Isomorphism theorem.
- 21. Prove that the Galois group of pth cyclotomic extension of \mathbb{Q} for a prime p is cyclic of order p-1.

 $(2 \times 5 = 10 \text{ Weightage})$
